Skip to content

EVA

pyextremes.eva.EVA

Extreme Value Analysis (EVA) class.

This class brings together most of the tools available in the pyextremes package bundled together in a pipeline to perform univariate extreme value analysis.

A typical workflow using the EVA class would consist of the following: - extract extreme values (.get_extremes) - fit a model (.fit_model) - generate outputs (.get_summary) - visualize the model (.plot_diagnostic, .plot_return_values)

Multiple additional graphical and numerical methods are available within this class to analyze extracted extreme values, visualize them, assess goodness-of-fit of selected model, and to visualize its outputs.

Source code in src/pyextremes/eva.py
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
class EVA:
    """
    Extreme Value Analysis (EVA) class.

    This class brings together most of the tools available in the pyextremes package
    bundled together in a pipeline to perform univariate extreme value analysis.

    A typical workflow using the EVA class would consist of the following:
        - extract extreme values (.get_extremes)
        - fit a model (.fit_model)
        - generate outputs (.get_summary)
        - visualize the model (.plot_diagnostic, .plot_return_values)

    Multiple additional graphical and numerical methods are available
    within this class to analyze extracted extreme values, visualize them,
    assess goodness-of-fit of selected model, and to visualize its outputs.
    """

    __slots__ = [
        "__data",
        "__extremes",
        "__extremes_method",
        "__extremes_type",
        "__extremes_kwargs",
        "__extremes_transformer",
        "__model",
    ]

    __data: pd.Series
    __extremes: typing.Optional[pd.Series]
    __extremes_method: typing.Optional[typing.Literal["BM", "POT"]]
    __extremes_type: typing.Optional[typing.Literal["high", "low"]]
    __extremes_kwargs: typing.Optional[typing.Dict[str, typing.Any]]
    __extremes_transformer: typing.Optional[ExtremesTransformer]
    __model: typing.Optional[typing.Union[MLE, Emcee]]

    def __init__(self, data: pd.Series) -> None:
        """
        Initialize EVA model.

        Parameters
        ----------
        data : pandas.Series
            Time series to be analyzed.
            Index must be date-time and values must be numeric.

        """
        # Ensure that `data` is pandas Series
        if not isinstance(data, pd.Series):
            raise TypeError(
                f"invalid type in '{type(data).__name__}' for the `data` argument, "
                f"must be pandas.Series"
            )

        # Copy `data` to ensure the original Series object it is not mutated
        data = data.copy(deep=True)

        # Ensure that `data` has correct index and value dtypes
        if not np.issubdtype(data.dtype, np.number):
            try:
                message = "`data` values are not numeric - converting to numeric"
                logger.debug(message)
                warnings.warn(message=message, category=RuntimeWarning)
                data = data.astype(np.float64)
            except ValueError as _error:
                raise TypeError(
                    f"invalid dtype in {data.dtype} for the `data` argument, "
                    f"must be numeric (subdtype of numpy.number)"
                ) from _error
        if not isinstance(data.index, pd.DatetimeIndex):
            raise TypeError(
                f"index of `data` must be a sequence of date-time objects, "
                f"not {data.index.inferred_type}"
            )

        # Ensure `data` doesn't have duplicate indices
        if (n_duplicates := len(data) - len(data.index.drop_duplicates())) > 0:
            message = (
                f"{n_duplicates:,d} duplicate indices found in `data` "
                "- removing duplicate entries"
            )
            logger.debug(message)
            warnings.warn(message=message, category=RuntimeWarning)
            data = data.groupby(data.index).first()

        # Ensure that `data` is sorted
        if not data.index.is_monotonic_increasing:
            message = (
                "`data` index is not sorted in ascending order - "
                "sorting `data` by index"
            )
            logger.debug(message)
            warnings.warn(message=message, category=RuntimeWarning)
            data = data.sort_index(ascending=True)

        # Ensure that `data` has no invalid entries
        n_nans = data.isna().sum()
        if n_nans > 0:
            message = (
                f"{n_nans:,d} Null values found in `data` - removing invalid entries"
            )
            logger.debug(message)
            warnings.warn(message=message, category=RuntimeWarning)
            data = data.dropna()

        # Set the `data` attribute
        self.__data: pd.Series = data

        # Initialize attributes related to extreme value extraction
        self.__extremes = None
        self.__extremes_method = None
        self.__extremes_type = None
        self.__extremes_kwargs = None
        self.__extremes_transformer = None

        # Initialize attributes related to model fitting
        self.__model = None

        logger.info("successfully initialized EVA object")

    @property
    def data(self) -> pd.Series:
        return self.__data

    @property
    def extremes(self) -> pd.Series:
        if self.__extremes is None:
            raise AttributeError(
                "extreme values must first be extracted "
                "using the '.get_extremes' method"
            )
        return self.__extremes

    @property
    def extremes_method(self) -> typing.Literal["BM", "POT"]:
        if self.__extremes_method is None:
            raise AttributeError(
                "extreme values must first be extracted "
                "using the '.get_extremes' method"
            )
        return self.__extremes_method

    @property
    def extremes_type(self) -> typing.Literal["high", "low"]:
        if self.__extremes_type is None:
            raise AttributeError(
                "extreme values must first be extracted "
                "using the '.get_extremes' method"
            )
        return self.__extremes_type

    @property
    def extremes_kwargs(self) -> typing.Dict[str, typing.Any]:
        if self.__extremes_kwargs is None:
            raise AttributeError(
                "extreme values must first be extracted "
                "using the '.get_extremes' method"
            )
        return self.__extremes_kwargs

    @property
    def extremes_transformer(self) -> ExtremesTransformer:
        if self.__extremes_transformer is None:
            raise AttributeError(
                "extreme values must first be extracted "
                "using the '.get_extremes' method"
            )
        return self.__extremes_transformer

    @property
    def model(self) -> typing.Union[MLE, Emcee]:
        if self.__model is None:
            raise AttributeError(
                "model must first be assigned using the '.fit_model' method"
            )
        return self.__model

    @property
    def distribution(self) -> Distribution:
        return self.model.distribution

    @property
    def loglikelihood(self) -> float:
        return self.model.loglikelihood

    @property
    def AIC(self) -> float:
        return self.model.AIC

    def test_ks(self, significance_level: float = 0.05) -> KolmogorovSmirnov:
        return KolmogorovSmirnov(
            extremes=self.extremes_transformer.transformed_extremes,
            distribution=self.distribution.distribution,
            fit_parameters={
                **self.model.fit_parameters,
                **self.model.distribution._fixed_parameters,
            },
            significance_level=significance_level,
        )

    def __repr__(self) -> str:
        # Width of repr block
        width = 88

        # Separator used to separate two columns of the repr block
        sep = " " * 6

        # Widths of left and right columns
        lwidth = (width - len(sep)) // 2
        rwidth = width - (lwidth + len(sep))

        # Function used to convert label-value pair
        # into a sequence of lines within a column
        def align_text(label: str, value: str, position: str) -> typing.List[str]:
            assert position in ["left", "right"]
            if label == "":
                if position == "left":
                    return [f"{value:>{lwidth}}"]
                return [f"{value:>{rwidth}}"]

            # Find width available for the value
            # (+2 stands for colon and space (label: value))
            label_width = len(label) + 2
            if position == "left":
                free_width = lwidth - label_width
            else:
                free_width = rwidth - label_width

            # Split value into chunks using 'free_width'
            value_chunks = [
                value[i : i + free_width] for i in range(0, len(value), free_width)
            ]

            # Collect text row-by-row using 'value_chunks'
            aligned_text = [f"{label}: {value_chunks[0]:>{free_width}}"]
            try:
                for chunk in value_chunks[1:]:
                    aligned_text.append(
                        "".join(
                            [
                                " " * label_width,
                                f"{chunk:>{free_width}}",
                            ]
                        )
                    )
            except IndexError:
                pass
            return aligned_text

        # Function used to convert two label-value pairs
        # into a sequence of rows representing two columns
        def align_pair(
            label: typing.Tuple[str, str],
            value: typing.Tuple[str, str],
        ) -> str:
            parts = [
                align_text(lbl, val, pos)
                for lbl, val, pos in zip(label, value, ("left", "right"))
            ]
            while len(parts[0]) != len(parts[1]):
                shorter_part_index = 0 if len(parts[0]) < len(parts[1]) else 1
                parts[shorter_part_index].append(
                    " " * len(parts[shorter_part_index][0])
                )
            return "\n".join([sep.join([left, right]) for left, right in zip(*parts)])

        # Create summary header
        start_date = (
            f"{calendar.month_name[self.data.index[0].month]} "
            f"{self.data.index[0].year}"
        )
        end_date = (
            f"{calendar.month_name[self.data.index[-1].month]} "
            f"{self.data.index[-1].year}"
        )
        summary = [
            "Univariate Extreme Value Analysis".center(width),
            "=" * width,
            "Source Data".center(width),
            "-" * width,
            align_pair(
                ("Data label", "Size"),
                (str(self.data.name), f"{len(self.data):,d}"),
            ),
            align_pair(
                ("Start", "End"),
                (start_date, end_date),
            ),
            "=" * width,
        ]

        # Fill the extremes section
        summary.extend(
            [
                "Extreme Values".center(width),
                "-" * width,
            ]
        )
        try:
            if self.extremes_method == "BM":
                ev_parameters = (
                    "Block size",
                    str(self.extremes_kwargs["block_size"]),
                )
            elif self.extremes_method == "POT":
                ev_parameters = (
                    "Threshold",
                    str(self.extremes_kwargs["threshold"]),
                )
            else:
                raise AssertionError
            summary.extend(
                [
                    align_pair(
                        ("Count", "Extraction method"),
                        (f"{len(self.extremes):,d}", self.extremes_method),
                    ),
                    align_pair(
                        ("Type", ev_parameters[0]),
                        (self.extremes_type, ev_parameters[1]),
                    ),
                ]
            )
        except AttributeError:
            summary.append("Extreme values have not been extracted")
        summary.append("=" * width)

        # Fill the model section
        summary.extend(
            [
                "Model".center(width),
                "-" * width,
            ]
        )
        try:
            summary.append(
                align_pair(
                    ("Model", "Distribution"),
                    (self.model.name, self.model.distribution.name),
                )
            )
            if self.model.name == "Emcee":
                n_walkers = getattr(self.model, "n_walkers")
                n_samples = getattr(self.model, "n_samples")
                summary.append(
                    align_pair(
                        ("Walkers", "Samples per walker"),
                        (f"{n_walkers:,d}", f"{n_samples:,d}"),
                    )
                )

            summary.append(
                align_pair(
                    ("Log-likelihood", "AIC"),
                    (f"{self.model.loglikelihood:.3f}", f"{self.model.AIC:.3f}"),
                )
            )

            summary.append("-" * width)

            free_parameters = [
                f"{parameter}={self.model.fit_parameters[parameter]:.3f}"
                for parameter in self.model.distribution.free_parameters
            ]
            fixed_parameters = [
                f"{key}={value:.3f}"
                for key, value in self.model.distribution.fixed_parameters.items()
            ]
            if len(fixed_parameters) == 0:
                fixed_parameters = ["All parameters are free"]
            delta_parameters = len(free_parameters) - len(fixed_parameters)
            if delta_parameters < 0:
                for _ in range(-delta_parameters):
                    free_parameters.append("")
            else:
                for _ in range(delta_parameters):
                    fixed_parameters.append("")

            for i, (frp, fip) in enumerate(zip(free_parameters, fixed_parameters)):
                if i == 0:
                    summary.append(
                        align_pair(
                            ("Free parameters", "Fixed parameters"),
                            (frp, fip),
                        )
                    )
                else:
                    summary.append(
                        align_pair(
                            ("", ""),
                            (frp, fip),
                        )
                    )

        except AttributeError:
            summary.append("Model has not been fit to the extremes")

        summary.append("=" * width)

        return "\n".join(summary)

    @typing.overload
    def get_extremes(
        self,
        method: typing.Literal["BM"],
        extremes_type: typing.Literal["high", "low"] = "high",
        *,
        block_size: str = "365.2425D",
        errors: typing.Literal["raise", "ignore", "coerce"] = "raise",
        min_last_block: typing.Optional[float] = None,
    ) -> None:
        ...

    @typing.overload
    def get_extremes(
        self,
        method: typing.Literal["POT"],
        extremes_type: typing.Literal["high", "low"] = "high",
        *,
        threshold: float,
        r: typing.Union[pd.Timedelta, typing.Any] = "24h",
    ) -> None:
        ...

    def get_extremes(
        self,
        method: typing.Literal["BM", "POT"],
        extremes_type: typing.Literal["high", "low"] = "high",
        **kwargs,
    ) -> None:
        """
        Get extreme events from time series.

        Extracts extreme values from the 'self.data' attribute.
        Stores extreme values in the 'self.extremes' attribute.

        Parameters
        ----------
        method : str
            Extreme value extraction method.
            Supported values:
                BM - Block Maxima
                POT - Peaks Over Threshold
        extremes_type : str, optional
            high (default) - get extreme high values
            low - get extreme low values
        kwargs
            if method is BM:
                block_size : str or pandas.Timedelta, optional
                    Block size (default='365.2425D').
                    See pandas.to_timedelta for more information.
                errors : str, optional
                    raise (default) - raise an exception
                        when encountering a block with no data
                    ignore - ignore blocks with no data
                    coerce - get extreme values for blocks with no data
                        as mean of all other extreme events in the series
                        with index being the middle point of corresponding interval
                min_last_block : float, optional
                    Minimum data availability ratio (0 to 1) in the last block
                    for it to be used to extract extreme value from.
                    This is used to discard last block when it is too short.
                    If None (default), last block is always used.
            if method is POT:
                threshold : float
                    Threshold used to find exceedances.
                r : pandas.Timedelta or value convertible to timedelta, optional
                    Duration of window used to decluster the exceedances.
                    By default r='24H' (24 hours).
                    See pandas.to_timedelta for more information.

        """
        message = f"for method='{method}' and extremes_type='{extremes_type}'"
        logger.debug("extracting extreme values %s", message)
        self.__extremes = get_extremes(
            method=method,
            ts=self.data,
            extremes_type=extremes_type,
            **kwargs,
        )
        self.__extremes_method = method
        self.__extremes_type = extremes_type
        logger.info("successfully extracted extreme values %s", message)

        logger.debug("collecting extreme value properties")
        self.__extremes_kwargs = {}
        if method == "BM":
            self.__extremes_kwargs["block_size"] = pd.to_timedelta(
                kwargs.get("block_size", "365.2425D")
            )
            self.__extremes_kwargs["errors"] = kwargs.get("errors", "raise")
            self.__extremes_kwargs["min_last_block"] = kwargs.get(
                "min_last_block", None
            )
        else:
            self.__extremes_kwargs["threshold"] = kwargs.get("threshold")
            self.__extremes_kwargs["r"] = pd.to_timedelta(kwargs.get("r", "24h"))
        logger.info("successfully collected extreme value properties")

        logger.debug("creating extremes transformer")
        self.__extremes_transformer = ExtremesTransformer(
            extremes=self.__extremes,
            extremes_type=self.__extremes_type,
        )
        logger.info("successfully created extremes transformer")

        logger.info("removing any previously declared models")
        self.__model = None

    @typing.overload
    def set_extremes(
        self,
        extremes: pd.Series,
        method: typing.Literal["BM"] = "BM",
        extremes_type: typing.Literal["high", "low"] = "high",
        *,
        block_size: str = "365.2425D",
        errors: typing.Literal["raise", "ignore", "coerce"] = "raise",
        min_last_block: typing.Optional[float] = None,
    ) -> None:
        ...

    @typing.overload
    def set_extremes(
        self,
        extremes: pd.Series,
        method: typing.Literal["POT"] = "POT",
        extremes_type: typing.Literal["high", "low"] = "high",
        *,
        threshold: float,
        r: typing.Union[pd.Timedelta, typing.Any] = "24h",
    ) -> None:
        ...

    def set_extremes(
        self,
        extremes: pd.Series,
        method: typing.Literal["BM", "POT"] = "BM",
        extremes_type: typing.Literal["high", "low"] = "high",
        **kwargs,
    ) -> None:
        """
        Set extreme values.

        This method is used to set extreme values onto the model instead
        of deriving them from data directly using the 'get_extremes' method.
        This way user can set extremes calculated using a custom methodology.

        Parameters
        ----------
        extremes : pd.Series
            Time series of extreme values to be set onto the model.
            Must be numeric, have date-time index, and have the same name
            as self.data.
        method : str, optional
            Extreme value extraction method.
            Supported values:
                BM (default) - Block Maxima
                POT - Peaks Over Threshold
        extremes_type : str, optional
            high (default) - extreme high values
            low - extreme low values
        kwargs:
            if method is BM:
                block_size : str or pandas.Timedelta, optional
                    Block size.
                    If None (default), then is calculated as median distance
                    between extreme events.
                errors : str, optional
                    raise - raise an exception
                        when encountering a block with no data
                    ignore (default) - ignore blocks with no data
                    coerce - get extreme values for blocks with no data
                        as mean of all other extreme events in the series
                        with index being the middle point of corresponding interval
                min_last_block : float, optional
                    Minimum data availability ratio (0 to 1) in the last block
                    for it to be used to extract extreme value from.
                    This is used to discard last block when it is too short.
                    If None (default), last block is always used.
            if method is POT:
                threshold : float, optional
                    Threshold used to find exceedances.
                    By default is taken as smallest value.
                r : pandas.Timedelta or value convertible to timedelta, optional
                    Duration of window used to decluster the exceedances.
                    By default r='24H' (24 hours).
                    See pandas.to_timedelta for more information.

        """
        # Validate `extremes`
        if not isinstance(extremes, pd.Series):
            raise TypeError(
                f"invalid type in '{type(extremes).__name__}' for the `extremes` "
                f"argument, must be pandas.Series"
            )
        extremes = extremes.copy(deep=True)
        if not isinstance(extremes.index, pd.DatetimeIndex):
            raise TypeError("invalid index type for `extremes`, must be date-time")
        if not np.issubdtype(extremes.dtype, np.number):
            raise TypeError("`extremes` must have numeric values")
        if extremes.name is None:
            extremes.name = self.data.name
        else:
            if extremes.name != self.data.name:
                raise ValueError("`extremes` name doesn't match that of `data`")
        if (
            extremes.index.min() < self.data.index.min()
            or extremes.index.max() > self.data.index.max()
        ):
            raise ValueError("`extremes` time range must fit within that of data")

        # Get `method`
        if method not in ["BM", "POT"]:
            raise ValueError(f"`method` must be either 'BM' or 'POT', not '{method}'")

        # Get `extremes_type`
        if extremes_type not in ["high", "low"]:
            raise ValueError(
                f"`extremes_type` must be either 'BM' or 'POT', not '{extremes_type}'"
            )

        # Get `extremes_kwargs`
        extremes_kwargs = {}
        if method == "BM":
            # Get `block_size`
            extremes_kwargs["block_size"] = pd.to_timedelta(
                kwargs.pop(
                    "block_size",
                    pd.to_timedelta(np.quantile(np.diff(extremes.index), 0.5)),
                )
            )
            if extremes_kwargs["block_size"] <= pd.to_timedelta("0D"):
                raise ValueError(
                    "`block_size` must be a positive timedelta, not %s"
                    % extremes_kwargs["block_size"]
                )

            # Get `errors`
            extremes_kwargs["errors"] = kwargs.pop("errors", "ignore")
            if extremes_kwargs["errors"] not in ["raise", "ignore", "coerce"]:
                raise ValueError(
                    f"invalid value in '{extremes_kwargs['errors']}' "
                    f"for the `errors` argument"
                )

            # Get `min_last_block`
            extremes_kwargs["min_last_block"] = kwargs.pop("min_last_block", None)
            if extremes_kwargs["min_last_block"] is not None:
                if not 0 <= extremes_kwargs["min_last_block"] <= 1:
                    raise ValueError(
                        "`min_last_block` must be a number in the [0, 1] range"
                    )

        else:
            # Get `threshold`
            extremes_kwargs["threshold"] = kwargs.pop(
                "threshold",
                {
                    "high": extremes.min(),
                    "low": extremes.max(),
                }[extremes_type],
            )
            if (
                extremes_type == "high"
                and extremes_kwargs["threshold"] > extremes.values.min()
            ) or (
                extremes_type == "low"
                and extremes_kwargs["threshold"] < extremes.values.max()
            ):
                raise ValueError("invalid `threshold` value")

            # Get `r`
            extremes_kwargs["r"] = pd.to_timedelta(kwargs.pop("r", "24h"))
            if extremes_kwargs["r"] <= pd.to_timedelta("0D"):
                raise ValueError(
                    "`r` must be a positive timedelta, not %s" % extremes_kwargs["r"]
                )

        # Check for unrecognized kwargs
        if len(kwargs) != 0:
            raise TypeError(
                f"unrecognized arguments passed in: {', '.join(kwargs.keys())}"
            )

        # Set attributes
        self.__extremes = extremes
        self.__extremes_method = method
        self.__extremes_type = extremes_type
        self.__extremes_kwargs = extremes_kwargs
        self.__extremes_transformer = ExtremesTransformer(
            extremes=self.__extremes,
            extremes_type=self.__extremes_type,
        )
        self.__model = None
        logger.info("successfully set extremes")

    @typing.overload
    @classmethod
    def from_extremes(
        cls,
        extremes: pd.Series,
        method: typing.Literal["BM"] = "BM",
        extremes_type: typing.Literal["high", "low"] = "high",
        *,
        block_size: str = "365.2425D",
        errors: typing.Literal["raise", "ignore", "coerce"] = "raise",
        min_last_block: typing.Optional[float] = None,
    ) -> None:
        ...

    @typing.overload
    @classmethod
    def from_extremes(
        cls,
        extremes: pd.Series,
        method: typing.Literal["POT"] = "POT",
        extremes_type: typing.Literal["high", "low"] = "high",
        *,
        threshold: float,
        r: typing.Union[pd.Timedelta, typing.Any] = "24h",
    ) -> None:
        ...

    @classmethod
    def from_extremes(
        cls,
        extremes: pd.Series,
        method: typing.Literal["BM", "POT"] = "BM",
        extremes_type: typing.Literal["high", "low"] = "high",
        **kwargs,
    ) -> EVA:
        """
        Create an EVA model using pre-defined `extremes`.

        A typical reason to use this method is when full timeseries is not available
        and only the extracted extremes (i.e. annual maxima) are known.

        Parameters
        ----------
        extremes : pd.Series
            Time series of extreme values.
        method : str, optional
            Extreme value extraction method.
            Supported values:
                BM (default) - Block Maxima
                POT - Peaks Over Threshold
        extremes_type : str, optional
            high (default) - extreme high values
            low - extreme low values
        kwargs:
            if method is BM:
                block_size : str or pandas.Timedelta, optional
                    Block size.
                    If None (default), then is calculated as median distance
                    between extreme events.
                errors : str, optional
                    raise - raise an exception
                        when encountering a block with no data
                    ignore (default) - ignore blocks with no data
                    coerce - get extreme values for blocks with no data
                        as mean of all other extreme events in the series
                        with index being the middle point of corresponding interval
                min_last_block : float, optional
                    Minimum data availability ratio (0 to 1) in the last block
                    for it to be used to extract extreme value from.
                    This is used to discard last block when it is too short.
                    If None (default), last block is always used.
            if method is POT:
                threshold : float, optional
                    Threshold used to find exceedances.
                    By default is taken as smallest value.
                r : pandas.Timedelta or value convertible to timedelta, optional
                    Duration of window used to decluster the exceedances.
                    By default r='24H' (24 hours).
                    See pandas.to_timedelta for more information.

        Returns
        -------
        EVA
            EVA model initialized with `extremes`.

        """
        model = cls(data=extremes)
        model.set_extremes(
            extremes=model.data,
            method=method,
            extremes_type=extremes_type,
            **kwargs,
        )
        return model

    def plot_extremes(
        self,
        figsize: tuple = (8, 5),
        ax: typing.Optional[plt.Axes] = None,
        show_clusters: bool = False,
    ) -> typing.Tuple[plt.Figure, plt.Axes]:  # pragma: no cover
        """
        Plot extreme events.

        Parameters
        ----------
        figsize : tuple, optional
            Figure size in inches in format (width, height).
            By default it is (8, 5).
        ax : matplotlib.axes._axes.Axes, optional
            Axes onto which extremes plot is drawn.
            If None (default), a new figure and axes objects are created.
        show_clusters : bool, optional
            If True, show cluster boundaries for POT extremes.
            Has no effect if extremes were extracted using BM method.
            May produce wrong cluster boundaries if extremes were set using the
            `set_extremes` or `from_extremes` methods and threshold and inter-cluster
            distance (r) arguments were not provided.
            By default is False.

        Returns
        -------
        figure : matplotlib.figure.Figure
            Figure object.
        axes : matplotlib.axes._axes.Axes
            Axes object.

        """
        return plot_extremes(
            ts=self.data,
            extremes=self.extremes,
            extremes_method=self.extremes_method,
            extremes_type=self.extremes_type,
            block_size=self.extremes_kwargs.get("block_size", None),
            threshold=self.extremes_kwargs.get("threshold", None),
            r=self.extremes_kwargs.get("r", None) if show_clusters else None,
            figsize=figsize,
            ax=ax,
        )

    @typing.overload
    def fit_model(
        self,
        model: typing.Literal["MLE"] = "MLE",
        distribution: typing.Union[str, scipy.stats.rv_continuous] = None,
        distribution_kwargs: typing.Optional[dict] = None,
    ) -> None:
        ...

    @typing.overload
    def fit_model(
        self,
        model: typing.Literal["Emcee"] = "Emcee",
        distribution: typing.Union[str, scipy.stats.rv_continuous] = None,
        distribution_kwargs: typing.Optional[dict] = None,
        n_walkers: int = 100,
        n_samples: int = 500,
        progress: bool = False,
    ) -> None:
        ...

    def fit_model(
        self,
        model: typing.Literal["MLE", "Emcee"] = "MLE",
        distribution: typing.Union[str, scipy.stats.rv_continuous] = None,
        distribution_kwargs: typing.Optional[dict] = None,
        **kwargs,
    ) -> None:
        """
        Fit a model to the extracted extreme values.

        Parameters
        ----------
        model : str, optional
            Name of model. By default it is 'MLE'.
            Name of model.
            Supported models:
                MLE - Maximum Likelihood Estimate (MLE) model.
                    Based on 'scipy' package (scipy.stats.rv_continuous.fit).
                Emcee - Markov Chain Monte Carlo (MCMC) model.
                    Based on 'emcee' package by Daniel Foreman-Mackey.
        distribution : str or scipy.stats.rv_continuous, optional
            Distribution name compatible with scipy.stats
            or a subclass of scipy.stats.rv_continuous.
            See https://docs.scipy.org/doc/scipy/reference/stats.html
            By default the distribution is selected automatically
            as best between 'genextreme' and 'gumbel_r' for 'BM' extremes
            and 'genpareto' and 'expon' for 'POT' extremes.
            Best distribution is selected using the AIC metric.
        distribution_kwargs : dict, optional
            Special keyword arguments, passed to the `.fit` method of the distribution.
            These keyword arguments represent parameters to be held fixed.
            Names of parameters to be fixed must have 'f' prefixes. Valid parameters:
                - shape(s): 'fc', e.g. fc=0
                - location: 'floc', e.g. floc=0
                - scale: 'fscale', e.g. fscale=1
            See documentation of a specific scipy.stats distribution
            for names of available parameters.
            By default, location parameter for 'genpareto' and 'expon' distributions
            is fixed to threshold (POT) or to minimum extremes (BM) value.
            Set to empty dictionary (distribution_kwargs={}) to avoid this behaviour.
        kwargs
            Keyword arguments passed to a model .fit method.
            MLE model:
                MLE model takes no additional arguments.
            Emcee model:
                n_walkers : int, optional
                    The number of walkers in the ensemble (default=100).
                n_samples : int, optional
                    The number of steps to run (default=500).
                progress : bool or str, optional
                    If True, a progress bar will be shown as the sampler progresses.
                    If a string, will select a specific tqdm progress bar.
                    Most notable is 'notebook', which shows a progress bar
                    suitable for Jupyter notebooks.
                    If False (default), no progress bar will be shown.
                    This progress bar is a part of the `emcee` package.

        """
        # Select default distribution
        if distribution is None:
            logger.debug(
                "selecting default distribution for extremes extracted using the "
                "'%s' method",
                self.extremes_method,
            )

            # Prepare list of candidate distributions
            if self.extremes_method == "BM":
                candidate_distributions = ["genextreme", "gumbel_r"]
                _distribution_kwargs = None
            elif self.extremes_method == "POT":
                candidate_distributions = ["genpareto", "expon"]
                _distribution_kwargs = {
                    "floc": self.extremes_kwargs.get(
                        "threshold",
                        self.extremes_transformer.transformed_extremes.min(),
                    )
                }
            else:
                raise AssertionError

            # Fit MLE model for candidate distributions
            # and select distribution with smallest AIC
            distribution = None
            aic = np.inf
            for distribution_name in candidate_distributions:
                new_aic = MLE(
                    extremes=self.extremes_transformer.transformed_extremes,
                    distribution=distribution_name,
                    distribution_kwargs=_distribution_kwargs,
                ).AIC
                if new_aic < aic:
                    distribution = distribution_name
                    aic = new_aic
            logger.info(
                "selected '%s' distribution with AIC score %s",
                distribution,
                aic,
            )

        # Get distribution name
        if isinstance(distribution, str):
            distribution_name = distribution
        elif isinstance(distribution, scipy.stats.rv_continuous):
            distribution_name = getattr(distribution, "name", None)
        else:
            raise TypeError(
                f"invalid type in {type(distribution)} "
                f"for the 'distribution' argument, "
                f"must be string or scipy.stats.rv_continuous"
            )

        # Checking if distribution is valid per extreme value theory:
        # Fisher-Tippet-Gnedenko theorem for 'BM'
        # Pickands–Balkema–de Haan theorem for 'POT'
        if distribution_name is None:
            warnings.warn(
                message=(
                    "provided distribution 'name' attribute cannot be resolved "
                    "and distribution validity cannot be verified"
                ),
                category=RuntimeWarning,
            )
        else:
            if self.extremes_method == "BM" and distribution_name not in [
                "genextreme",
                "gumbel_r",
            ]:
                warnings.warn(
                    message=(
                        f"'{distribution_name}' distribution is not "
                        f"recommended to be used with extremes extracted "
                        f"using the 'BM' method, 'genextreme' or 'gumebel_r' "
                        f"should be used per the Fisher-Tippet-Gnedenko theorem"
                    ),
                    category=RuntimeWarning,
                )
            elif self.extremes_method == "POT" and distribution_name not in [
                "genpareto",
                "expon",
            ]:
                warnings.warn(
                    message=(
                        f"'{distribution_name}' distribution is not "
                        f"recommended to be used with extremes extracted "
                        f"using the 'POT' method, 'genpareto' or 'expon' "
                        f"should be used per the Pickands–Balkema–de Haan theorem"
                    ),
                    category=RuntimeWarning,
                )

        # Freeze (fix) location parameter for genpareto/expon distributions
        if distribution_kwargs is None and distribution_name in ["genpareto", "expon"]:
            distribution_kwargs = {
                "floc": self.extremes_kwargs.get(
                    "threshold", self.extremes_transformer.transformed_extremes.min()
                )
            }
            logger.debug(
                "freezing location parameter (floc) at %s for '%s' distribution",
                distribution_kwargs["floc"],
                distribution_name,
            )

        # Fit model to transformed extremes
        self.__model = get_model(
            model=model,
            extremes=self.extremes_transformer.transformed_extremes,
            distribution=distribution,
            distribution_kwargs=distribution_kwargs,
            **kwargs,
        )

    def _get_mcmc_plot_inputs(
        self,
        labels: typing.Optional[typing.List[str]] = None,
    ) -> tuple:  # pragma: no cover
        try:
            trace = self.model.trace
            trace_map = tuple(
                self.model.fit_parameters[parameter]
                for parameter in self.model.distribution.free_parameters
            )
        except TypeError as _error:
            raise TypeError(
                f"this method is only applicable to MCMC-like models, "
                f"not to '{self.model.name}' model"
            ) from _error

        parameter_names = {
            "loc": r"Location, $\mu$",
            "scale": r"Scale, $\sigma$",
        }
        if self.model.distribution.name in ["genextreme", "genpareto"]:
            parameter_names["c"] = r"Shape, $\xi$"
        if labels is None:
            labels = []
            for parameter in self.model.distribution.free_parameters:
                try:
                    labels.append(parameter_names[parameter])
                except KeyError:
                    labels.append(f"Shape parameter '{parameter}'")

        return trace, trace_map, labels

    def plot_trace(
        self,
        burn_in: int = 0,
        labels: typing.Optional[typing.List[str]] = None,
        figsize: typing.Optional[typing.Tuple[float, float]] = None,
    ) -> typing.Tuple[plt.Figure, list]:  # pragma: no cover
        """
        Plot trace plot for MCMC sampler trace.

        Parameters
        ----------
        burn_in : int, optional
            Burn-in value (number of first steps to discard for each walker).
            By default it is 0 (no values are discarded).
        labels : array-like, optional
            Sequence of strings with parameter names, used to label axes.
            If None (default), then axes are labeled sequentially.
        figsize : tuple, optional
            Figure size in inches.
            If None (default), then figure size is calculated automatically
            as 8 by 2 times number of parameters.

        Returns
        -------
        figure : matplotlib.figure.Figure
            Figure object.
        axes : list
            List with n_parameters Axes objects.

        """
        trace, trace_map, labels = self._get_mcmc_plot_inputs(labels=labels)
        return plot_trace(
            trace=trace,
            trace_map=trace_map,
            burn_in=burn_in,
            labels=labels,
            figsize=figsize,
        )

    def plot_corner(
        self,
        burn_in: int = 0,
        labels: typing.Optional[typing.List[str]] = None,
        levels: typing.Optional[int] = None,
        figsize: typing.Tuple[float, float] = (8, 8),
    ) -> typing.Tuple[plt.Figure, list]:  # pragma: no cover
        """
        Plot corner plot for MCMC sampler trace.

        Parameters
        ----------
        burn_in : int, optional
            Burn-in value (number of first steps to discard for each walker).
            By default it is 0 (no values are discarded).
        labels : array-like, optional
            Sequence of strings with parameter names, used to label axes.
            If None (default), then axes are labeled sequentially.
        levels : int, optional
            Number of Gaussian KDE contours to plot.
            If None (default), then not shown.
        figsize : tuple, optional
            Figure size in inches. By default it is (8, 8).

        Returns
        -------
        figure : matplotlib.figure.Figure
            Figure object.
        axes : list
            2D list with Axes objects of size N by N, where N is `trace.shape[2]`.
            Empty slots are represented by None. Axes are ordered from left to right
            top to bottom.

        """
        trace, trace_map, labels = self._get_mcmc_plot_inputs(labels=labels)
        return plot_corner(
            trace=trace,
            trace_map=trace_map,
            burn_in=burn_in,
            labels=labels,
            levels=levels,
            figsize=figsize,
        )

    def get_return_value(
        self,
        return_period,
        return_period_size: typing.Union[str, pd.Timedelta] = "365.2425D",
        alpha: typing.Optional[float] = None,
        **kwargs,
    ) -> tuple:
        """
        Get return value and confidence interval for given return period(s).

        Parameters
        ----------
        return_period : array-like
            Return period or 1D array of return periods.
            Given as a multiple of `return_period_size`.
        return_period_size : str or pandas.Timedelta, optional
            Size of return periods (default='365.2425D').
            If set to '30D', then a return period of 12
            would be roughly equivalent to a 1 year return period (360 days).
        alpha : float, optional
            Width of confidence interval (0, 1).
            If None (default), return None
            for upper and lower confidence interval bounds.
        kwargs
            Model-specific keyword arguments.
            If alpha is None, keyword arguments are ignored
            (error still raised for unrecognized arguments).
            MLE model:
                n_samples : int, optional
                    Number of bootstrap samples used to estimate
                    confidence interval bounds (default=100).
            Emcee model:
                burn_in : int
                    Burn-in value (number of first steps to discard for each walker).

        Returns
        -------
        return_value : array-like
            Return values.
        ci_lower : array-like
            Lower confidence interval bounds.
        ci_upper : array-like
            Upper confidence interval bounds.

        """
        # Parse the 'return_period_size' argument
        if not isinstance(return_period_size, pd.Timedelta):
            if isinstance(return_period_size, str):
                return_period_size = pd.to_timedelta(return_period_size)
            else:
                raise TypeError(
                    f"invalid type in {type(return_period_size)} "
                    f"for the 'return_period_size' argument"
                )

        # Calculate rate of extreme events
        # as number of extreme events per `return_period_size`
        if self.extremes_method == "BM":
            extremes_rate = return_period_size / self.extremes_kwargs["block_size"]
        elif self.extremes_method == "POT":
            n_periods = (self.data.index[-1] - self.data.index[0]) / return_period_size
            extremes_rate = len(self.extremes) / n_periods
        else:
            raise AssertionError

        # Convert 'return_period' to ndarray
        return_period = np.asarray(a=return_period, dtype=np.float64).copy()
        if return_period.ndim == 0:
            return_period = return_period[np.newaxis]
        if return_period.ndim != 1:
            raise ValueError(
                f"invalid shape in {return_period.shape} "
                f"for the 'return_period' argument, must be 1D array"
            )

        # Calculate exceedance probability
        exceedance_probability = 1 / return_period / extremes_rate

        # Calculate return values
        return tuple(
            self.extremes_transformer.transform(value)
            for value in self.model.get_return_value(
                exceedance_probability=exceedance_probability, alpha=alpha, **kwargs
            )
        )

    def get_summary(
        self,
        return_period,
        return_period_size: typing.Union[str, pd.Timedelta] = "365.2425D",
        alpha: typing.Optional[float] = None,
        **kwargs,
    ) -> pd.DataFrame:
        """
        Generate a pandas DataFrame with return values and confidence interval bounds.

        Parameters
        ----------
        return_period : array-like
            Return period or 1D array of return periods.
            Given as a multiple of `return_period_size`.
        return_period_size : str or pandas.Timedelta, optional
            Size of return periods (default='365.2425D').
            If set to '30D', then a return period of 12
            would be roughly equivalent to a 1 year return period (360 days).
        alpha : float, optional
            Width of confidence interval (0, 1).
            If None (default), return None
            for upper and lower confidence interval bounds.
        kwargs
            Model-specific keyword arguments.
            If alpha is None, keyword arguments are ignored
            (error still raised for unrecognized arguments).
            MLE model:
                n_samples : int, optional
                    Number of bootstrap samples used to estimate
                    confidence interval bounds (default=100).
            Emcee model:
                burn_in : int
                    Burn-in value (number of first steps to discard for each walker).

        Returns
        -------
        summary : pandas.DataFrame
            DataFrame with return values and confidence interval bounds.

        """
        # Convert 'return_period' to ndarray
        return_period = np.asarray(a=return_period, dtype=np.float64).copy()
        if return_period.ndim == 0:
            return_period = return_period[np.newaxis]
        if return_period.ndim != 1:
            raise ValueError(
                f"invalid shape in {return_period.shape} "
                f"for the 'return_period' argument, must be 1D array"
            )

        # Calculate return values
        rv = self.get_return_value(
            return_period=return_period,
            return_period_size=return_period_size,
            alpha=alpha,
            **kwargs,
        )
        return_values = []
        for value in rv:
            value = np.asarray(a=value, dtype=np.float64)
            if value.ndim == 0:
                value = value[np.newaxis]
            return_values.append(value)

        return pd.DataFrame(
            data=np.transpose(return_values),
            index=pd.Index(data=return_period, name="return period"),
            columns=["return value", "lower ci", "upper ci"],
        )

    def plot_return_values(
        self,
        return_period=None,
        return_period_size: typing.Union[str, pd.Timedelta] = "365.2425D",
        alpha: typing.Optional[float] = None,
        plotting_position: typing.Literal[
            "ecdf",
            "hazen",
            "weibull",
            "tukey",
            "blom",
            "median",
            "cunnane",
            "gringorten",
            "beard",
        ] = "weibull",
        ax: typing.Optional[plt.Axes] = None,
        figsize: typing.Tuple[float, float] = (8, 5),
        **kwargs,
    ) -> tuple:  # pragma: no cover
        """
        Plot return values and confidence intervals for given return periods.

        Parameters
        ----------
        return_period : array-like, optional
            Return period or 1D array of return periods.
            Given as a multiple of `return_period_size`.
            If None (default), calculates as 100 values uniformly spaced
            within the range of return periods of the extracted extreme values.
        return_period_size : str or pandas.Timedelta, optional
            Size of return periods (default='365.2425D').
            If set to '30D', then a return period of 12
            would be roughly equivalent to a 1 year return period (360 days).
        alpha : float, optional
            Width of confidence interval (0, 1).
            If None (default), confidence interval bounds are not plotted.
        plotting_position : str, optional
            Plotting position name (default='weibull'), not case-sensitive.
            Supported plotting positions:
                ecdf, hazen, weibull, tukey, blom, median, cunnane, gringorten, beard
        ax : matplotlib.axes._axes.Axes, optional
            Axes onto which the return value plot is drawn.
            If None (default), a new figure and axes objects are created.
        figsize : tuple, optional
            Figure size in inches in format (width, height).
            By default it is (8, 5).
        kwargs
            Model-specific keyword arguments.
            If alpha is None, keyword arguments are ignored
            (error still raised for unrecognized arguments).
            MLE model:
                n_samples : int, optional
                    Number of bootstrap samples used to estimate
                    confidence interval bounds (default=100).
            Emcee model:
                burn_in : int
                    Burn-in value (number of first steps to discard for each walker).

        Returns
        -------
        figure : matplotlib.figure.Figure
            Figure object.
        axes : matplotlib.axes._axes.Axes
            Axes object.

        """
        # Get observed return values
        observed_return_values = get_return_periods(
            ts=self.data,
            extremes=self.extremes,
            extremes_method=self.extremes_method,
            extremes_type=self.extremes_type,
            block_size=self.extremes_kwargs.get("block_size", None),
            return_period_size=return_period_size,
            plotting_position=plotting_position,
        )

        # Parse the 'return_period' argument
        if return_period is None:
            return_period = np.linspace(
                observed_return_values.loc[:, "return period"].min(),
                observed_return_values.loc[:, "return period"].max(),
                100,
            )
        else:
            # Convert 'return_period' to ndarray
            return_period = np.asarray(a=return_period, dtype=np.float64).copy()
            if return_period.ndim == 0:
                return_period = return_period[np.newaxis]
            if return_period.ndim != 1:
                raise ValueError(
                    f"invalid shape in {return_period.shape} "
                    f"for the 'return_period' argument, must be 1D array"
                )
            if len(return_period) < 2:
                raise ValueError(
                    f"'return_period' must have at least 2 return periods, "
                    f"{len(return_period)} was given"
                )

        # Get modeled return values
        modeled_return_values = self.get_summary(
            return_period=return_period,
            return_period_size=return_period_size,
            alpha=alpha,
            **kwargs,
        )

        # Plot return values
        return plot_return_values(
            observed_return_values=observed_return_values,
            modeled_return_values=modeled_return_values,
            ax=ax,
            figsize=figsize,
        )

    def plot_probability(
        self,
        plot_type: str,
        return_period_size: typing.Union[str, pd.Timedelta] = "365.2425D",
        plotting_position: typing.Literal[
            "ecdf",
            "hazen",
            "weibull",
            "tukey",
            "blom",
            "median",
            "cunnane",
            "gringorten",
            "beard",
        ] = "weibull",
        ax: typing.Optional[plt.Axes] = None,
        figsize: typing.Tuple[float, float] = (8, 8),
    ) -> tuple:  # pragma: no cover
        """
        Plot a probability plot (QQ or PP).

        Parameters
        ----------
        plot_type : str
            Probability plot type.
            Supported values:
                PP - probability plot
                QQ - quantile plot
        return_period_size : str or pandas.Timedelta, optional
            Size of return periods (default='365.2425D').
            If set to '30D', then a return period of 12
            would be roughly equivalent to a 1 year return period (360 days).
        plotting_position : str, optional
            Plotting position name (default='weibull'), not case-sensitive.
            Supported plotting positions:
                ecdf, hazen, weibull, tukey, blom, median, cunnane, gringorten, beard
        ax : matplotlib.axes._axes.Axes, optional
            Axes onto which the probability plot is drawn.
            If None (default), a new figure and axes objects are created.
        figsize : tuple, optional
            Figure size in inches in format (width, height).
            By default it is (8, 8).

        Returns
        -------
        figure : matplotlib.figure.Figure
            Figure object.
        axes : matplotlib.axes._axes.Axes
            Axes object.

        """
        # Get observed return values
        observed_return_values = get_return_periods(
            ts=self.data,
            extremes=self.extremes,
            extremes_method=self.extremes_method,
            extremes_type=self.extremes_type,
            block_size=self.extremes_kwargs.get("block_size", None),
            return_period_size=return_period_size,
            plotting_position=plotting_position,
        )

        # Get observed and theoretical values
        # depending on 'plot_type'
        if plot_type == "PP":
            observed = (
                1 - observed_return_values.loc[:, "exceedance probability"].values
            )
            theoretical = self.model.cdf(
                self.extremes_transformer.transform(
                    observed_return_values.loc[:, self.extremes.name].values
                )
            )
        elif plot_type == "QQ":
            observed = observed_return_values.loc[:, self.extremes.name].values
            theoretical = self.extremes_transformer.transform(
                self.model.isf(
                    observed_return_values.loc[:, "exceedance probability"].values
                )
            )
        else:
            raise ValueError(
                f"invalid value in '{plot_type}' for the 'plot_type' argument, "
                f"available values: PP, QQ"
            )

        # Plot the probability plot
        return plot_probability(
            observed=observed,
            theoretical=theoretical,
            ax=ax,
            figsize=figsize,
        )

    def plot_diagnostic(
        self,
        return_period=None,
        return_period_size: typing.Union[str, pd.Timedelta] = "365.2425D",
        alpha: typing.Optional[float] = None,
        plotting_position: typing.Literal[
            "ecdf",
            "hazen",
            "weibull",
            "tukey",
            "blom",
            "median",
            "cunnane",
            "gringorten",
            "beard",
        ] = "weibull",
        figsize: typing.Tuple[float, float] = (8, 8),
        **kwargs,
    ):  # pragma: no cover
        """
        Plot a diagnostic plot.

        This plot shows four key plots characterizing the EVA model:
            - top left : return values plot
            - top right : probability density (PDF) plot
            - bottom left : quantile (Q-Q) plot
            - bottom right : probability (P-P) plot

        Parameters
        ----------
        return_period : array-like, optional
            Return period or 1D array of return periods.
            Given as a multiple of `return_period_size`.
            If None (default), calculates as 100 values uniformly spaced
            within the range of return periods of the extracted extreme values.
        return_period_size : str or pandas.Timedelta, optional
            Size of return periods (default='365.2425D').
            If set to '30D', then a return period of 12
            would be roughly equivalent to a 1 year return period (360 days).
        alpha : float, optional
            Width of confidence interval (0, 1).
            If None (default), confidence interval bounds are not plotted.
        plotting_position : str, optional
            Plotting position name (default='weibull'), not case-sensitive.
            Supported plotting positions:
                ecdf, hazen, weibull, tukey, blom, median, cunnane, gringorten, beard
        figsize : tuple, optional
            Figure size in inches in format (width, height).
            By default it is (8, 8).
        kwargs
            Model-specific keyword arguments.
            If alpha is None, keyword arguments are ignored
            (error still raised for unrecognized arguments).
            MLE model:
                n_samples : int, optional
                    Number of bootstrap samples used to estimate
                    confidence interval bounds (default=100).
            Emcee model:
                burn_in : int
                    Burn-in value (number of first steps to discard for each walker).

        Returns
        -------
        figure : matplotlib.figure.Figure
            Figure object.
        axes : tuple
            Tuple with four Axes objects: return values, pdf, qq, pp

        """
        with plt.rc_context(rc=pyextremes_rc):
            # Create figure
            fig = plt.figure(figsize=figsize, dpi=96)

            # Create gridspec
            gs = matplotlib.gridspec.GridSpec(
                nrows=2,
                ncols=2,
                wspace=0.3,
                hspace=0.3,
                width_ratios=[1, 1],
                height_ratios=[1, 1],
            )

            # Create axes
            ax_rv = fig.add_subplot(gs[0, 0])
            ax_pdf = fig.add_subplot(gs[0, 1])
            ax_qq = fig.add_subplot(gs[1, 0])
            ax_pp = fig.add_subplot(gs[1, 1])

            # Plot return values
            self.plot_return_values(
                return_period=return_period,
                return_period_size=return_period_size,
                alpha=alpha,
                plotting_position=plotting_position,
                ax=ax_rv,
                **kwargs,
            )
            ax_rv.set_title("Return value plot")
            ax_rv.grid(False, which="both")

            # Plot PDF
            pdf_support = np.linspace(self.extremes.min(), self.extremes.max(), 100)
            pdf = self.model.pdf(self.extremes_transformer.transform(pdf_support))
            ax_pdf.grid(False)
            ax_pdf.set_title("Probability density plot")
            ax_pdf.set_ylabel("Probability density")
            ax_pdf.set_xlabel(self.data.name)
            ax_pdf.hist(
                self.extremes.values,
                bins=np.histogram_bin_edges(a=self.extremes.values, bins="auto"),
                density=True,
                rwidth=0.8,
                facecolor="#5199FF",
                edgecolor="None",
                lw=0,
                alpha=0.25,
                zorder=5,
            )
            ax_pdf.hist(
                self.extremes.values,
                bins=np.histogram_bin_edges(a=self.extremes.values, bins="auto"),
                density=True,
                rwidth=0.8,
                facecolor="None",
                edgecolor="#5199FF",
                lw=1,
                ls="--",
                zorder=10,
            )
            ax_pdf.plot(pdf_support, pdf, color="#F85C50", lw=2, ls="-", zorder=15)
            ax_pdf.scatter(
                self.extremes.values,
                np.full(shape=len(self.extremes), fill_value=0),
                marker="|",
                s=40,
                color="k",
                lw=0.5,
                zorder=15,
            )
            ax_pdf.set_ylim(0, ax_pdf.get_ylim()[1])

            # Plot Q-Q plot
            self.plot_probability(
                plot_type="QQ",
                return_period_size=return_period_size,
                plotting_position=plotting_position,
                ax=ax_qq,
            )
            ax_qq.set_title("Q-Q plot")

            # Plot P-P plot
            self.plot_probability(
                plot_type="PP",
                return_period_size=return_period_size,
                plotting_position=plotting_position,
                ax=ax_pp,
            )
            ax_pp.set_title("P-P plot")

            return fig, (ax_rv, ax_pdf, ax_qq, ax_pp)

__init__(data)

Initialize EVA model.

Parameters:

Name Type Description Default
data Series

Time series to be analyzed. Index must be date-time and values must be numeric.

required
Source code in src/pyextremes/eva.py
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
def __init__(self, data: pd.Series) -> None:
    """
    Initialize EVA model.

    Parameters
    ----------
    data : pandas.Series
        Time series to be analyzed.
        Index must be date-time and values must be numeric.

    """
    # Ensure that `data` is pandas Series
    if not isinstance(data, pd.Series):
        raise TypeError(
            f"invalid type in '{type(data).__name__}' for the `data` argument, "
            f"must be pandas.Series"
        )

    # Copy `data` to ensure the original Series object it is not mutated
    data = data.copy(deep=True)

    # Ensure that `data` has correct index and value dtypes
    if not np.issubdtype(data.dtype, np.number):
        try:
            message = "`data` values are not numeric - converting to numeric"
            logger.debug(message)
            warnings.warn(message=message, category=RuntimeWarning)
            data = data.astype(np.float64)
        except ValueError as _error:
            raise TypeError(
                f"invalid dtype in {data.dtype} for the `data` argument, "
                f"must be numeric (subdtype of numpy.number)"
            ) from _error
    if not isinstance(data.index, pd.DatetimeIndex):
        raise TypeError(
            f"index of `data` must be a sequence of date-time objects, "
            f"not {data.index.inferred_type}"
        )

    # Ensure `data` doesn't have duplicate indices
    if (n_duplicates := len(data) - len(data.index.drop_duplicates())) > 0:
        message = (
            f"{n_duplicates:,d} duplicate indices found in `data` "
            "- removing duplicate entries"
        )
        logger.debug(message)
        warnings.warn(message=message, category=RuntimeWarning)
        data = data.groupby(data.index).first()

    # Ensure that `data` is sorted
    if not data.index.is_monotonic_increasing:
        message = (
            "`data` index is not sorted in ascending order - "
            "sorting `data` by index"
        )
        logger.debug(message)
        warnings.warn(message=message, category=RuntimeWarning)
        data = data.sort_index(ascending=True)

    # Ensure that `data` has no invalid entries
    n_nans = data.isna().sum()
    if n_nans > 0:
        message = (
            f"{n_nans:,d} Null values found in `data` - removing invalid entries"
        )
        logger.debug(message)
        warnings.warn(message=message, category=RuntimeWarning)
        data = data.dropna()

    # Set the `data` attribute
    self.__data: pd.Series = data

    # Initialize attributes related to extreme value extraction
    self.__extremes = None
    self.__extremes_method = None
    self.__extremes_type = None
    self.__extremes_kwargs = None
    self.__extremes_transformer = None

    # Initialize attributes related to model fitting
    self.__model = None

    logger.info("successfully initialized EVA object")

fit_model(model='MLE', distribution=None, distribution_kwargs=None, **kwargs)

Fit a model to the extracted extreme values.

Parameters:

Name Type Description Default
model str

Name of model. By default it is 'MLE'. Name of model. Supported models: MLE - Maximum Likelihood Estimate (MLE) model. Based on 'scipy' package (scipy.stats.rv_continuous.fit). Emcee - Markov Chain Monte Carlo (MCMC) model. Based on 'emcee' package by Daniel Foreman-Mackey.

'MLE'
distribution str or rv_continuous

Distribution name compatible with scipy.stats or a subclass of scipy.stats.rv_continuous. See https://docs.scipy.org/doc/scipy/reference/stats.html By default the distribution is selected automatically as best between 'genextreme' and 'gumbel_r' for 'BM' extremes and 'genpareto' and 'expon' for 'POT' extremes. Best distribution is selected using the AIC metric.

None
distribution_kwargs dict

Special keyword arguments, passed to the .fit method of the distribution. These keyword arguments represent parameters to be held fixed. Names of parameters to be fixed must have 'f' prefixes. Valid parameters: - shape(s): 'fc', e.g. fc=0 - location: 'floc', e.g. floc=0 - scale: 'fscale', e.g. fscale=1 See documentation of a specific scipy.stats distribution for names of available parameters. By default, location parameter for 'genpareto' and 'expon' distributions is fixed to threshold (POT) or to minimum extremes (BM) value. Set to empty dictionary (distribution_kwargs={}) to avoid this behaviour.

None
kwargs

Keyword arguments passed to a model .fit method. MLE model: MLE model takes no additional arguments. Emcee model: n_walkers : int, optional The number of walkers in the ensemble (default=100). n_samples : int, optional The number of steps to run (default=500). progress : bool or str, optional If True, a progress bar will be shown as the sampler progresses. If a string, will select a specific tqdm progress bar. Most notable is 'notebook', which shows a progress bar suitable for Jupyter notebooks. If False (default), no progress bar will be shown. This progress bar is a part of the emcee package.

{}
Source code in src/pyextremes/eva.py
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
def fit_model(
    self,
    model: typing.Literal["MLE", "Emcee"] = "MLE",
    distribution: typing.Union[str, scipy.stats.rv_continuous] = None,
    distribution_kwargs: typing.Optional[dict] = None,
    **kwargs,
) -> None:
    """
    Fit a model to the extracted extreme values.

    Parameters
    ----------
    model : str, optional
        Name of model. By default it is 'MLE'.
        Name of model.
        Supported models:
            MLE - Maximum Likelihood Estimate (MLE) model.
                Based on 'scipy' package (scipy.stats.rv_continuous.fit).
            Emcee - Markov Chain Monte Carlo (MCMC) model.
                Based on 'emcee' package by Daniel Foreman-Mackey.
    distribution : str or scipy.stats.rv_continuous, optional
        Distribution name compatible with scipy.stats
        or a subclass of scipy.stats.rv_continuous.
        See https://docs.scipy.org/doc/scipy/reference/stats.html
        By default the distribution is selected automatically
        as best between 'genextreme' and 'gumbel_r' for 'BM' extremes
        and 'genpareto' and 'expon' for 'POT' extremes.
        Best distribution is selected using the AIC metric.
    distribution_kwargs : dict, optional
        Special keyword arguments, passed to the `.fit` method of the distribution.
        These keyword arguments represent parameters to be held fixed.
        Names of parameters to be fixed must have 'f' prefixes. Valid parameters:
            - shape(s): 'fc', e.g. fc=0
            - location: 'floc', e.g. floc=0
            - scale: 'fscale', e.g. fscale=1
        See documentation of a specific scipy.stats distribution
        for names of available parameters.
        By default, location parameter for 'genpareto' and 'expon' distributions
        is fixed to threshold (POT) or to minimum extremes (BM) value.
        Set to empty dictionary (distribution_kwargs={}) to avoid this behaviour.
    kwargs
        Keyword arguments passed to a model .fit method.
        MLE model:
            MLE model takes no additional arguments.
        Emcee model:
            n_walkers : int, optional
                The number of walkers in the ensemble (default=100).
            n_samples : int, optional
                The number of steps to run (default=500).
            progress : bool or str, optional
                If True, a progress bar will be shown as the sampler progresses.
                If a string, will select a specific tqdm progress bar.
                Most notable is 'notebook', which shows a progress bar
                suitable for Jupyter notebooks.
                If False (default), no progress bar will be shown.
                This progress bar is a part of the `emcee` package.

    """
    # Select default distribution
    if distribution is None:
        logger.debug(
            "selecting default distribution for extremes extracted using the "
            "'%s' method",
            self.extremes_method,
        )

        # Prepare list of candidate distributions
        if self.extremes_method == "BM":
            candidate_distributions = ["genextreme", "gumbel_r"]
            _distribution_kwargs = None
        elif self.extremes_method == "POT":
            candidate_distributions = ["genpareto", "expon"]
            _distribution_kwargs = {
                "floc": self.extremes_kwargs.get(
                    "threshold",
                    self.extremes_transformer.transformed_extremes.min(),
                )
            }
        else:
            raise AssertionError

        # Fit MLE model for candidate distributions
        # and select distribution with smallest AIC
        distribution = None
        aic = np.inf
        for distribution_name in candidate_distributions:
            new_aic = MLE(
                extremes=self.extremes_transformer.transformed_extremes,
                distribution=distribution_name,
                distribution_kwargs=_distribution_kwargs,
            ).AIC
            if new_aic < aic:
                distribution = distribution_name
                aic = new_aic
        logger.info(
            "selected '%s' distribution with AIC score %s",
            distribution,
            aic,
        )

    # Get distribution name
    if isinstance(distribution, str):
        distribution_name = distribution
    elif isinstance(distribution, scipy.stats.rv_continuous):
        distribution_name = getattr(distribution, "name", None)
    else:
        raise TypeError(
            f"invalid type in {type(distribution)} "
            f"for the 'distribution' argument, "
            f"must be string or scipy.stats.rv_continuous"
        )

    # Checking if distribution is valid per extreme value theory:
    # Fisher-Tippet-Gnedenko theorem for 'BM'
    # Pickands–Balkema–de Haan theorem for 'POT'
    if distribution_name is None:
        warnings.warn(
            message=(
                "provided distribution 'name' attribute cannot be resolved "
                "and distribution validity cannot be verified"
            ),
            category=RuntimeWarning,
        )
    else:
        if self.extremes_method == "BM" and distribution_name not in [
            "genextreme",
            "gumbel_r",
        ]:
            warnings.warn(
                message=(
                    f"'{distribution_name}' distribution is not "
                    f"recommended to be used with extremes extracted "
                    f"using the 'BM' method, 'genextreme' or 'gumebel_r' "
                    f"should be used per the Fisher-Tippet-Gnedenko theorem"
                ),
                category=RuntimeWarning,
            )
        elif self.extremes_method == "POT" and distribution_name not in [
            "genpareto",
            "expon",
        ]:
            warnings.warn(
                message=(
                    f"'{distribution_name}' distribution is not "
                    f"recommended to be used with extremes extracted "
                    f"using the 'POT' method, 'genpareto' or 'expon' "
                    f"should be used per the Pickands–Balkema–de Haan theorem"
                ),
                category=RuntimeWarning,
            )

    # Freeze (fix) location parameter for genpareto/expon distributions
    if distribution_kwargs is None and distribution_name in ["genpareto", "expon"]:
        distribution_kwargs = {
            "floc": self.extremes_kwargs.get(
                "threshold", self.extremes_transformer.transformed_extremes.min()
            )
        }
        logger.debug(
            "freezing location parameter (floc) at %s for '%s' distribution",
            distribution_kwargs["floc"],
            distribution_name,
        )

    # Fit model to transformed extremes
    self.__model = get_model(
        model=model,
        extremes=self.extremes_transformer.transformed_extremes,
        distribution=distribution,
        distribution_kwargs=distribution_kwargs,
        **kwargs,
    )

from_extremes(extremes, method='BM', extremes_type='high', **kwargs) classmethod

Create an EVA model using pre-defined extremes.

A typical reason to use this method is when full timeseries is not available and only the extracted extremes (i.e. annual maxima) are known.

Parameters:

Name Type Description Default
extremes Series

Time series of extreme values.

required
method str

Extreme value extraction method. Supported values: BM (default) - Block Maxima POT - Peaks Over Threshold

'BM'
extremes_type str

high (default) - extreme high values low - extreme low values

'high'
kwargs

if method is BM: block_size : str or pandas.Timedelta, optional Block size. If None (default), then is calculated as median distance between extreme events. errors : str, optional raise - raise an exception when encountering a block with no data ignore (default) - ignore blocks with no data coerce - get extreme values for blocks with no data as mean of all other extreme events in the series with index being the middle point of corresponding interval min_last_block : float, optional Minimum data availability ratio (0 to 1) in the last block for it to be used to extract extreme value from. This is used to discard last block when it is too short. If None (default), last block is always used. if method is POT: threshold : float, optional Threshold used to find exceedances. By default is taken as smallest value. r : pandas.Timedelta or value convertible to timedelta, optional Duration of window used to decluster the exceedances. By default r='24H' (24 hours). See pandas.to_timedelta for more information.

{}

Returns:

Type Description
EVA

EVA model initialized with extremes.

Source code in src/pyextremes/eva.py
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
@classmethod
def from_extremes(
    cls,
    extremes: pd.Series,
    method: typing.Literal["BM", "POT"] = "BM",
    extremes_type: typing.Literal["high", "low"] = "high",
    **kwargs,
) -> EVA:
    """
    Create an EVA model using pre-defined `extremes`.

    A typical reason to use this method is when full timeseries is not available
    and only the extracted extremes (i.e. annual maxima) are known.

    Parameters
    ----------
    extremes : pd.Series
        Time series of extreme values.
    method : str, optional
        Extreme value extraction method.
        Supported values:
            BM (default) - Block Maxima
            POT - Peaks Over Threshold
    extremes_type : str, optional
        high (default) - extreme high values
        low - extreme low values
    kwargs:
        if method is BM:
            block_size : str or pandas.Timedelta, optional
                Block size.
                If None (default), then is calculated as median distance
                between extreme events.
            errors : str, optional
                raise - raise an exception
                    when encountering a block with no data
                ignore (default) - ignore blocks with no data
                coerce - get extreme values for blocks with no data
                    as mean of all other extreme events in the series
                    with index being the middle point of corresponding interval
            min_last_block : float, optional
                Minimum data availability ratio (0 to 1) in the last block
                for it to be used to extract extreme value from.
                This is used to discard last block when it is too short.
                If None (default), last block is always used.
        if method is POT:
            threshold : float, optional
                Threshold used to find exceedances.
                By default is taken as smallest value.
            r : pandas.Timedelta or value convertible to timedelta, optional
                Duration of window used to decluster the exceedances.
                By default r='24H' (24 hours).
                See pandas.to_timedelta for more information.

    Returns
    -------
    EVA
        EVA model initialized with `extremes`.

    """
    model = cls(data=extremes)
    model.set_extremes(
        extremes=model.data,
        method=method,
        extremes_type=extremes_type,
        **kwargs,
    )
    return model

get_extremes(method, extremes_type='high', **kwargs)

Get extreme events from time series.

Extracts extreme values from the 'self.data' attribute. Stores extreme values in the 'self.extremes' attribute.

Parameters:

Name Type Description Default
method str

Extreme value extraction method. Supported values: BM - Block Maxima POT - Peaks Over Threshold

required
extremes_type str

high (default) - get extreme high values low - get extreme low values

'high'
kwargs

if method is BM: block_size : str or pandas.Timedelta, optional Block size (default='365.2425D'). See pandas.to_timedelta for more information. errors : str, optional raise (default) - raise an exception when encountering a block with no data ignore - ignore blocks with no data coerce - get extreme values for blocks with no data as mean of all other extreme events in the series with index being the middle point of corresponding interval min_last_block : float, optional Minimum data availability ratio (0 to 1) in the last block for it to be used to extract extreme value from. This is used to discard last block when it is too short. If None (default), last block is always used. if method is POT: threshold : float Threshold used to find exceedances. r : pandas.Timedelta or value convertible to timedelta, optional Duration of window used to decluster the exceedances. By default r='24H' (24 hours). See pandas.to_timedelta for more information.

{}
Source code in src/pyextremes/eva.py
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
def get_extremes(
    self,
    method: typing.Literal["BM", "POT"],
    extremes_type: typing.Literal["high", "low"] = "high",
    **kwargs,
) -> None:
    """
    Get extreme events from time series.

    Extracts extreme values from the 'self.data' attribute.
    Stores extreme values in the 'self.extremes' attribute.

    Parameters
    ----------
    method : str
        Extreme value extraction method.
        Supported values:
            BM - Block Maxima
            POT - Peaks Over Threshold
    extremes_type : str, optional
        high (default) - get extreme high values
        low - get extreme low values
    kwargs
        if method is BM:
            block_size : str or pandas.Timedelta, optional
                Block size (default='365.2425D').
                See pandas.to_timedelta for more information.
            errors : str, optional
                raise (default) - raise an exception
                    when encountering a block with no data
                ignore - ignore blocks with no data
                coerce - get extreme values for blocks with no data
                    as mean of all other extreme events in the series
                    with index being the middle point of corresponding interval
            min_last_block : float, optional
                Minimum data availability ratio (0 to 1) in the last block
                for it to be used to extract extreme value from.
                This is used to discard last block when it is too short.
                If None (default), last block is always used.
        if method is POT:
            threshold : float
                Threshold used to find exceedances.
            r : pandas.Timedelta or value convertible to timedelta, optional
                Duration of window used to decluster the exceedances.
                By default r='24H' (24 hours).
                See pandas.to_timedelta for more information.

    """
    message = f"for method='{method}' and extremes_type='{extremes_type}'"
    logger.debug("extracting extreme values %s", message)
    self.__extremes = get_extremes(
        method=method,
        ts=self.data,
        extremes_type=extremes_type,
        **kwargs,
    )
    self.__extremes_method = method
    self.__extremes_type = extremes_type
    logger.info("successfully extracted extreme values %s", message)

    logger.debug("collecting extreme value properties")
    self.__extremes_kwargs = {}
    if method == "BM":
        self.__extremes_kwargs["block_size"] = pd.to_timedelta(
            kwargs.get("block_size", "365.2425D")
        )
        self.__extremes_kwargs["errors"] = kwargs.get("errors", "raise")
        self.__extremes_kwargs["min_last_block"] = kwargs.get(
            "min_last_block", None
        )
    else:
        self.__extremes_kwargs["threshold"] = kwargs.get("threshold")
        self.__extremes_kwargs["r"] = pd.to_timedelta(kwargs.get("r", "24h"))
    logger.info("successfully collected extreme value properties")

    logger.debug("creating extremes transformer")
    self.__extremes_transformer = ExtremesTransformer(
        extremes=self.__extremes,
        extremes_type=self.__extremes_type,
    )
    logger.info("successfully created extremes transformer")

    logger.info("removing any previously declared models")
    self.__model = None

get_return_value(return_period, return_period_size='365.2425D', alpha=None, **kwargs)

Get return value and confidence interval for given return period(s).

Parameters:

Name Type Description Default
return_period array - like

Return period or 1D array of return periods. Given as a multiple of return_period_size.

required
return_period_size str or Timedelta

Size of return periods (default='365.2425D'). If set to '30D', then a return period of 12 would be roughly equivalent to a 1 year return period (360 days).

'365.2425D'
alpha float

Width of confidence interval (0, 1). If None (default), return None for upper and lower confidence interval bounds.

None
kwargs

Model-specific keyword arguments. If alpha is None, keyword arguments are ignored (error still raised for unrecognized arguments). MLE model: n_samples : int, optional Number of bootstrap samples used to estimate confidence interval bounds (default=100). Emcee model: burn_in : int Burn-in value (number of first steps to discard for each walker).

{}

Returns:

Name Type Description
return_value array - like

Return values.

ci_lower array - like

Lower confidence interval bounds.

ci_upper array - like

Upper confidence interval bounds.

Source code in src/pyextremes/eva.py
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
def get_return_value(
    self,
    return_period,
    return_period_size: typing.Union[str, pd.Timedelta] = "365.2425D",
    alpha: typing.Optional[float] = None,
    **kwargs,
) -> tuple:
    """
    Get return value and confidence interval for given return period(s).

    Parameters
    ----------
    return_period : array-like
        Return period or 1D array of return periods.
        Given as a multiple of `return_period_size`.
    return_period_size : str or pandas.Timedelta, optional
        Size of return periods (default='365.2425D').
        If set to '30D', then a return period of 12
        would be roughly equivalent to a 1 year return period (360 days).
    alpha : float, optional
        Width of confidence interval (0, 1).
        If None (default), return None
        for upper and lower confidence interval bounds.
    kwargs
        Model-specific keyword arguments.
        If alpha is None, keyword arguments are ignored
        (error still raised for unrecognized arguments).
        MLE model:
            n_samples : int, optional
                Number of bootstrap samples used to estimate
                confidence interval bounds (default=100).
        Emcee model:
            burn_in : int
                Burn-in value (number of first steps to discard for each walker).

    Returns
    -------
    return_value : array-like
        Return values.
    ci_lower : array-like
        Lower confidence interval bounds.
    ci_upper : array-like
        Upper confidence interval bounds.

    """
    # Parse the 'return_period_size' argument
    if not isinstance(return_period_size, pd.Timedelta):
        if isinstance(return_period_size, str):
            return_period_size = pd.to_timedelta(return_period_size)
        else:
            raise TypeError(
                f"invalid type in {type(return_period_size)} "
                f"for the 'return_period_size' argument"
            )

    # Calculate rate of extreme events
    # as number of extreme events per `return_period_size`
    if self.extremes_method == "BM":
        extremes_rate = return_period_size / self.extremes_kwargs["block_size"]
    elif self.extremes_method == "POT":
        n_periods = (self.data.index[-1] - self.data.index[0]) / return_period_size
        extremes_rate = len(self.extremes) / n_periods
    else:
        raise AssertionError

    # Convert 'return_period' to ndarray
    return_period = np.asarray(a=return_period, dtype=np.float64).copy()
    if return_period.ndim == 0:
        return_period = return_period[np.newaxis]
    if return_period.ndim != 1:
        raise ValueError(
            f"invalid shape in {return_period.shape} "
            f"for the 'return_period' argument, must be 1D array"
        )

    # Calculate exceedance probability
    exceedance_probability = 1 / return_period / extremes_rate

    # Calculate return values
    return tuple(
        self.extremes_transformer.transform(value)
        for value in self.model.get_return_value(
            exceedance_probability=exceedance_probability, alpha=alpha, **kwargs
        )
    )

get_summary(return_period, return_period_size='365.2425D', alpha=None, **kwargs)

Generate a pandas DataFrame with return values and confidence interval bounds.

Parameters:

Name Type Description Default
return_period array - like

Return period or 1D array of return periods. Given as a multiple of return_period_size.

required
return_period_size str or Timedelta

Size of return periods (default='365.2425D'). If set to '30D', then a return period of 12 would be roughly equivalent to a 1 year return period (360 days).

'365.2425D'
alpha float

Width of confidence interval (0, 1). If None (default), return None for upper and lower confidence interval bounds.

None
kwargs

Model-specific keyword arguments. If alpha is None, keyword arguments are ignored (error still raised for unrecognized arguments). MLE model: n_samples : int, optional Number of bootstrap samples used to estimate confidence interval bounds (default=100). Emcee model: burn_in : int Burn-in value (number of first steps to discard for each walker).

{}

Returns:

Name Type Description
summary DataFrame

DataFrame with return values and confidence interval bounds.

Source code in src/pyextremes/eva.py
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
def get_summary(
    self,
    return_period,
    return_period_size: typing.Union[str, pd.Timedelta] = "365.2425D",
    alpha: typing.Optional[float] = None,
    **kwargs,
) -> pd.DataFrame:
    """
    Generate a pandas DataFrame with return values and confidence interval bounds.

    Parameters
    ----------
    return_period : array-like
        Return period or 1D array of return periods.
        Given as a multiple of `return_period_size`.
    return_period_size : str or pandas.Timedelta, optional
        Size of return periods (default='365.2425D').
        If set to '30D', then a return period of 12
        would be roughly equivalent to a 1 year return period (360 days).
    alpha : float, optional
        Width of confidence interval (0, 1).
        If None (default), return None
        for upper and lower confidence interval bounds.
    kwargs
        Model-specific keyword arguments.
        If alpha is None, keyword arguments are ignored
        (error still raised for unrecognized arguments).
        MLE model:
            n_samples : int, optional
                Number of bootstrap samples used to estimate
                confidence interval bounds (default=100).
        Emcee model:
            burn_in : int
                Burn-in value (number of first steps to discard for each walker).

    Returns
    -------
    summary : pandas.DataFrame
        DataFrame with return values and confidence interval bounds.

    """
    # Convert 'return_period' to ndarray
    return_period = np.asarray(a=return_period, dtype=np.float64).copy()
    if return_period.ndim == 0:
        return_period = return_period[np.newaxis]
    if return_period.ndim != 1:
        raise ValueError(
            f"invalid shape in {return_period.shape} "
            f"for the 'return_period' argument, must be 1D array"
        )

    # Calculate return values
    rv = self.get_return_value(
        return_period=return_period,
        return_period_size=return_period_size,
        alpha=alpha,
        **kwargs,
    )
    return_values = []
    for value in rv:
        value = np.asarray(a=value, dtype=np.float64)
        if value.ndim == 0:
            value = value[np.newaxis]
        return_values.append(value)

    return pd.DataFrame(
        data=np.transpose(return_values),
        index=pd.Index(data=return_period, name="return period"),
        columns=["return value", "lower ci", "upper ci"],
    )

plot_corner(burn_in=0, labels=None, levels=None, figsize=(8, 8))

Plot corner plot for MCMC sampler trace.

Parameters:

Name Type Description Default
burn_in int

Burn-in value (number of first steps to discard for each walker). By default it is 0 (no values are discarded).

0
labels array - like

Sequence of strings with parameter names, used to label axes. If None (default), then axes are labeled sequentially.

None
levels int

Number of Gaussian KDE contours to plot. If None (default), then not shown.

None
figsize tuple

Figure size in inches. By default it is (8, 8).

(8, 8)

Returns:

Name Type Description
figure Figure

Figure object.

axes list

2D list with Axes objects of size N by N, where N is trace.shape[2]. Empty slots are represented by None. Axes are ordered from left to right top to bottom.

Source code in src/pyextremes/eva.py
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
def plot_corner(
    self,
    burn_in: int = 0,
    labels: typing.Optional[typing.List[str]] = None,
    levels: typing.Optional[int] = None,
    figsize: typing.Tuple[float, float] = (8, 8),
) -> typing.Tuple[plt.Figure, list]:  # pragma: no cover
    """
    Plot corner plot for MCMC sampler trace.

    Parameters
    ----------
    burn_in : int, optional
        Burn-in value (number of first steps to discard for each walker).
        By default it is 0 (no values are discarded).
    labels : array-like, optional
        Sequence of strings with parameter names, used to label axes.
        If None (default), then axes are labeled sequentially.
    levels : int, optional
        Number of Gaussian KDE contours to plot.
        If None (default), then not shown.
    figsize : tuple, optional
        Figure size in inches. By default it is (8, 8).

    Returns
    -------
    figure : matplotlib.figure.Figure
        Figure object.
    axes : list
        2D list with Axes objects of size N by N, where N is `trace.shape[2]`.
        Empty slots are represented by None. Axes are ordered from left to right
        top to bottom.

    """
    trace, trace_map, labels = self._get_mcmc_plot_inputs(labels=labels)
    return plot_corner(
        trace=trace,
        trace_map=trace_map,
        burn_in=burn_in,
        labels=labels,
        levels=levels,
        figsize=figsize,
    )

plot_diagnostic(return_period=None, return_period_size='365.2425D', alpha=None, plotting_position='weibull', figsize=(8, 8), **kwargs)

Plot a diagnostic plot.

This plot shows four key plots characterizing the EVA model: - top left : return values plot - top right : probability density (PDF) plot - bottom left : quantile (Q-Q) plot - bottom right : probability (P-P) plot

Parameters:

Name Type Description Default
return_period array - like

Return period or 1D array of return periods. Given as a multiple of return_period_size. If None (default), calculates as 100 values uniformly spaced within the range of return periods of the extracted extreme values.

None
return_period_size str or Timedelta

Size of return periods (default='365.2425D'). If set to '30D', then a return period of 12 would be roughly equivalent to a 1 year return period (360 days).

'365.2425D'
alpha float

Width of confidence interval (0, 1). If None (default), confidence interval bounds are not plotted.

None
plotting_position str

Plotting position name (default='weibull'), not case-sensitive. Supported plotting positions: ecdf, hazen, weibull, tukey, blom, median, cunnane, gringorten, beard

'weibull'
figsize tuple

Figure size in inches in format (width, height). By default it is (8, 8).

(8, 8)
kwargs

Model-specific keyword arguments. If alpha is None, keyword arguments are ignored (error still raised for unrecognized arguments). MLE model: n_samples : int, optional Number of bootstrap samples used to estimate confidence interval bounds (default=100). Emcee model: burn_in : int Burn-in value (number of first steps to discard for each walker).

{}

Returns:

Name Type Description
figure Figure

Figure object.

axes tuple

Tuple with four Axes objects: return values, pdf, qq, pp

Source code in src/pyextremes/eva.py
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
def plot_diagnostic(
    self,
    return_period=None,
    return_period_size: typing.Union[str, pd.Timedelta] = "365.2425D",
    alpha: typing.Optional[float] = None,
    plotting_position: typing.Literal[
        "ecdf",
        "hazen",
        "weibull",
        "tukey",
        "blom",
        "median",
        "cunnane",
        "gringorten",
        "beard",
    ] = "weibull",
    figsize: typing.Tuple[float, float] = (8, 8),
    **kwargs,
):  # pragma: no cover
    """
    Plot a diagnostic plot.

    This plot shows four key plots characterizing the EVA model:
        - top left : return values plot
        - top right : probability density (PDF) plot
        - bottom left : quantile (Q-Q) plot
        - bottom right : probability (P-P) plot

    Parameters
    ----------
    return_period : array-like, optional
        Return period or 1D array of return periods.
        Given as a multiple of `return_period_size`.
        If None (default), calculates as 100 values uniformly spaced
        within the range of return periods of the extracted extreme values.
    return_period_size : str or pandas.Timedelta, optional
        Size of return periods (default='365.2425D').
        If set to '30D', then a return period of 12
        would be roughly equivalent to a 1 year return period (360 days).
    alpha : float, optional
        Width of confidence interval (0, 1).
        If None (default), confidence interval bounds are not plotted.
    plotting_position : str, optional
        Plotting position name (default='weibull'), not case-sensitive.
        Supported plotting positions:
            ecdf, hazen, weibull, tukey, blom, median, cunnane, gringorten, beard
    figsize : tuple, optional
        Figure size in inches in format (width, height).
        By default it is (8, 8).
    kwargs
        Model-specific keyword arguments.
        If alpha is None, keyword arguments are ignored
        (error still raised for unrecognized arguments).
        MLE model:
            n_samples : int, optional
                Number of bootstrap samples used to estimate
                confidence interval bounds (default=100).
        Emcee model:
            burn_in : int
                Burn-in value (number of first steps to discard for each walker).

    Returns
    -------
    figure : matplotlib.figure.Figure
        Figure object.
    axes : tuple
        Tuple with four Axes objects: return values, pdf, qq, pp

    """
    with plt.rc_context(rc=pyextremes_rc):
        # Create figure
        fig = plt.figure(figsize=figsize, dpi=96)

        # Create gridspec
        gs = matplotlib.gridspec.GridSpec(
            nrows=2,
            ncols=2,
            wspace=0.3,
            hspace=0.3,
            width_ratios=[1, 1],
            height_ratios=[1, 1],
        )

        # Create axes
        ax_rv = fig.add_subplot(gs[0, 0])
        ax_pdf = fig.add_subplot(gs[0, 1])
        ax_qq = fig.add_subplot(gs[1, 0])
        ax_pp = fig.add_subplot(gs[1, 1])

        # Plot return values
        self.plot_return_values(
            return_period=return_period,
            return_period_size=return_period_size,
            alpha=alpha,
            plotting_position=plotting_position,
            ax=ax_rv,
            **kwargs,
        )
        ax_rv.set_title("Return value plot")
        ax_rv.grid(False, which="both")

        # Plot PDF
        pdf_support = np.linspace(self.extremes.min(), self.extremes.max(), 100)
        pdf = self.model.pdf(self.extremes_transformer.transform(pdf_support))
        ax_pdf.grid(False)
        ax_pdf.set_title("Probability density plot")
        ax_pdf.set_ylabel("Probability density")
        ax_pdf.set_xlabel(self.data.name)
        ax_pdf.hist(
            self.extremes.values,
            bins=np.histogram_bin_edges(a=self.extremes.values, bins="auto"),
            density=True,
            rwidth=0.8,
            facecolor="#5199FF",
            edgecolor="None",
            lw=0,
            alpha=0.25,
            zorder=5,
        )
        ax_pdf.hist(
            self.extremes.values,
            bins=np.histogram_bin_edges(a=self.extremes.values, bins="auto"),
            density=True,
            rwidth=0.8,
            facecolor="None",
            edgecolor="#5199FF",
            lw=1,
            ls="--",
            zorder=10,
        )
        ax_pdf.plot(pdf_support, pdf, color="#F85C50", lw=2, ls="-", zorder=15)
        ax_pdf.scatter(
            self.extremes.values,
            np.full(shape=len(self.extremes), fill_value=0),
            marker="|",
            s=40,
            color="k",
            lw=0.5,
            zorder=15,
        )
        ax_pdf.set_ylim(0, ax_pdf.get_ylim()[1])

        # Plot Q-Q plot
        self.plot_probability(
            plot_type="QQ",
            return_period_size=return_period_size,
            plotting_position=plotting_position,
            ax=ax_qq,
        )
        ax_qq.set_title("Q-Q plot")

        # Plot P-P plot
        self.plot_probability(
            plot_type="PP",
            return_period_size=return_period_size,
            plotting_position=plotting_position,
            ax=ax_pp,
        )
        ax_pp.set_title("P-P plot")

        return fig, (ax_rv, ax_pdf, ax_qq, ax_pp)

plot_extremes(figsize=(8, 5), ax=None, show_clusters=False)

Plot extreme events.

Parameters:

Name Type Description Default
figsize tuple

Figure size in inches in format (width, height). By default it is (8, 5).

(8, 5)
ax Axes

Axes onto which extremes plot is drawn. If None (default), a new figure and axes objects are created.

None
show_clusters bool

If True, show cluster boundaries for POT extremes. Has no effect if extremes were extracted using BM method. May produce wrong cluster boundaries if extremes were set using the set_extremes or from_extremes methods and threshold and inter-cluster distance (r) arguments were not provided. By default is False.

False

Returns:

Name Type Description
figure Figure

Figure object.

axes Axes

Axes object.

Source code in src/pyextremes/eva.py
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
def plot_extremes(
    self,
    figsize: tuple = (8, 5),
    ax: typing.Optional[plt.Axes] = None,
    show_clusters: bool = False,
) -> typing.Tuple[plt.Figure, plt.Axes]:  # pragma: no cover
    """
    Plot extreme events.

    Parameters
    ----------
    figsize : tuple, optional
        Figure size in inches in format (width, height).
        By default it is (8, 5).
    ax : matplotlib.axes._axes.Axes, optional
        Axes onto which extremes plot is drawn.
        If None (default), a new figure and axes objects are created.
    show_clusters : bool, optional
        If True, show cluster boundaries for POT extremes.
        Has no effect if extremes were extracted using BM method.
        May produce wrong cluster boundaries if extremes were set using the
        `set_extremes` or `from_extremes` methods and threshold and inter-cluster
        distance (r) arguments were not provided.
        By default is False.

    Returns
    -------
    figure : matplotlib.figure.Figure
        Figure object.
    axes : matplotlib.axes._axes.Axes
        Axes object.

    """
    return plot_extremes(
        ts=self.data,
        extremes=self.extremes,
        extremes_method=self.extremes_method,
        extremes_type=self.extremes_type,
        block_size=self.extremes_kwargs.get("block_size", None),
        threshold=self.extremes_kwargs.get("threshold", None),
        r=self.extremes_kwargs.get("r", None) if show_clusters else None,
        figsize=figsize,
        ax=ax,
    )

plot_probability(plot_type, return_period_size='365.2425D', plotting_position='weibull', ax=None, figsize=(8, 8))

Plot a probability plot (QQ or PP).

Parameters:

Name Type Description Default
plot_type str

Probability plot type. Supported values: PP - probability plot QQ - quantile plot

required
return_period_size str or Timedelta

Size of return periods (default='365.2425D'). If set to '30D', then a return period of 12 would be roughly equivalent to a 1 year return period (360 days).

'365.2425D'
plotting_position str

Plotting position name (default='weibull'), not case-sensitive. Supported plotting positions: ecdf, hazen, weibull, tukey, blom, median, cunnane, gringorten, beard

'weibull'
ax Axes

Axes onto which the probability plot is drawn. If None (default), a new figure and axes objects are created.

None
figsize tuple

Figure size in inches in format (width, height). By default it is (8, 8).

(8, 8)

Returns:

Name Type Description
figure Figure

Figure object.

axes Axes

Axes object.

Source code in src/pyextremes/eva.py
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
def plot_probability(
    self,
    plot_type: str,
    return_period_size: typing.Union[str, pd.Timedelta] = "365.2425D",
    plotting_position: typing.Literal[
        "ecdf",
        "hazen",
        "weibull",
        "tukey",
        "blom",
        "median",
        "cunnane",
        "gringorten",
        "beard",
    ] = "weibull",
    ax: typing.Optional[plt.Axes] = None,
    figsize: typing.Tuple[float, float] = (8, 8),
) -> tuple:  # pragma: no cover
    """
    Plot a probability plot (QQ or PP).

    Parameters
    ----------
    plot_type : str
        Probability plot type.
        Supported values:
            PP - probability plot
            QQ - quantile plot
    return_period_size : str or pandas.Timedelta, optional
        Size of return periods (default='365.2425D').
        If set to '30D', then a return period of 12
        would be roughly equivalent to a 1 year return period (360 days).
    plotting_position : str, optional
        Plotting position name (default='weibull'), not case-sensitive.
        Supported plotting positions:
            ecdf, hazen, weibull, tukey, blom, median, cunnane, gringorten, beard
    ax : matplotlib.axes._axes.Axes, optional
        Axes onto which the probability plot is drawn.
        If None (default), a new figure and axes objects are created.
    figsize : tuple, optional
        Figure size in inches in format (width, height).
        By default it is (8, 8).

    Returns
    -------
    figure : matplotlib.figure.Figure
        Figure object.
    axes : matplotlib.axes._axes.Axes
        Axes object.

    """
    # Get observed return values
    observed_return_values = get_return_periods(
        ts=self.data,
        extremes=self.extremes,
        extremes_method=self.extremes_method,
        extremes_type=self.extremes_type,
        block_size=self.extremes_kwargs.get("block_size", None),
        return_period_size=return_period_size,
        plotting_position=plotting_position,
    )

    # Get observed and theoretical values
    # depending on 'plot_type'
    if plot_type == "PP":
        observed = (
            1 - observed_return_values.loc[:, "exceedance probability"].values
        )
        theoretical = self.model.cdf(
            self.extremes_transformer.transform(
                observed_return_values.loc[:, self.extremes.name].values
            )
        )
    elif plot_type == "QQ":
        observed = observed_return_values.loc[:, self.extremes.name].values
        theoretical = self.extremes_transformer.transform(
            self.model.isf(
                observed_return_values.loc[:, "exceedance probability"].values
            )
        )
    else:
        raise ValueError(
            f"invalid value in '{plot_type}' for the 'plot_type' argument, "
            f"available values: PP, QQ"
        )

    # Plot the probability plot
    return plot_probability(
        observed=observed,
        theoretical=theoretical,
        ax=ax,
        figsize=figsize,
    )

plot_return_values(return_period=None, return_period_size='365.2425D', alpha=None, plotting_position='weibull', ax=None, figsize=(8, 5), **kwargs)

Plot return values and confidence intervals for given return periods.

Parameters:

Name Type Description Default
return_period array - like

Return period or 1D array of return periods. Given as a multiple of return_period_size. If None (default), calculates as 100 values uniformly spaced within the range of return periods of the extracted extreme values.

None
return_period_size str or Timedelta

Size of return periods (default='365.2425D'). If set to '30D', then a return period of 12 would be roughly equivalent to a 1 year return period (360 days).

'365.2425D'
alpha float

Width of confidence interval (0, 1). If None (default), confidence interval bounds are not plotted.

None
plotting_position str

Plotting position name (default='weibull'), not case-sensitive. Supported plotting positions: ecdf, hazen, weibull, tukey, blom, median, cunnane, gringorten, beard

'weibull'
ax Axes

Axes onto which the return value plot is drawn. If None (default), a new figure and axes objects are created.

None
figsize tuple

Figure size in inches in format (width, height). By default it is (8, 5).

(8, 5)
kwargs

Model-specific keyword arguments. If alpha is None, keyword arguments are ignored (error still raised for unrecognized arguments). MLE model: n_samples : int, optional Number of bootstrap samples used to estimate confidence interval bounds (default=100). Emcee model: burn_in : int Burn-in value (number of first steps to discard for each walker).

{}

Returns:

Name Type Description
figure Figure

Figure object.

axes Axes

Axes object.

Source code in src/pyextremes/eva.py
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
def plot_return_values(
    self,
    return_period=None,
    return_period_size: typing.Union[str, pd.Timedelta] = "365.2425D",
    alpha: typing.Optional[float] = None,
    plotting_position: typing.Literal[
        "ecdf",
        "hazen",
        "weibull",
        "tukey",
        "blom",
        "median",
        "cunnane",
        "gringorten",
        "beard",
    ] = "weibull",
    ax: typing.Optional[plt.Axes] = None,
    figsize: typing.Tuple[float, float] = (8, 5),
    **kwargs,
) -> tuple:  # pragma: no cover
    """
    Plot return values and confidence intervals for given return periods.

    Parameters
    ----------
    return_period : array-like, optional
        Return period or 1D array of return periods.
        Given as a multiple of `return_period_size`.
        If None (default), calculates as 100 values uniformly spaced
        within the range of return periods of the extracted extreme values.
    return_period_size : str or pandas.Timedelta, optional
        Size of return periods (default='365.2425D').
        If set to '30D', then a return period of 12
        would be roughly equivalent to a 1 year return period (360 days).
    alpha : float, optional
        Width of confidence interval (0, 1).
        If None (default), confidence interval bounds are not plotted.
    plotting_position : str, optional
        Plotting position name (default='weibull'), not case-sensitive.
        Supported plotting positions:
            ecdf, hazen, weibull, tukey, blom, median, cunnane, gringorten, beard
    ax : matplotlib.axes._axes.Axes, optional
        Axes onto which the return value plot is drawn.
        If None (default), a new figure and axes objects are created.
    figsize : tuple, optional
        Figure size in inches in format (width, height).
        By default it is (8, 5).
    kwargs
        Model-specific keyword arguments.
        If alpha is None, keyword arguments are ignored
        (error still raised for unrecognized arguments).
        MLE model:
            n_samples : int, optional
                Number of bootstrap samples used to estimate
                confidence interval bounds (default=100).
        Emcee model:
            burn_in : int
                Burn-in value (number of first steps to discard for each walker).

    Returns
    -------
    figure : matplotlib.figure.Figure
        Figure object.
    axes : matplotlib.axes._axes.Axes
        Axes object.

    """
    # Get observed return values
    observed_return_values = get_return_periods(
        ts=self.data,
        extremes=self.extremes,
        extremes_method=self.extremes_method,
        extremes_type=self.extremes_type,
        block_size=self.extremes_kwargs.get("block_size", None),
        return_period_size=return_period_size,
        plotting_position=plotting_position,
    )

    # Parse the 'return_period' argument
    if return_period is None:
        return_period = np.linspace(
            observed_return_values.loc[:, "return period"].min(),
            observed_return_values.loc[:, "return period"].max(),
            100,
        )
    else:
        # Convert 'return_period' to ndarray
        return_period = np.asarray(a=return_period, dtype=np.float64).copy()
        if return_period.ndim == 0:
            return_period = return_period[np.newaxis]
        if return_period.ndim != 1:
            raise ValueError(
                f"invalid shape in {return_period.shape} "
                f"for the 'return_period' argument, must be 1D array"
            )
        if len(return_period) < 2:
            raise ValueError(
                f"'return_period' must have at least 2 return periods, "
                f"{len(return_period)} was given"
            )

    # Get modeled return values
    modeled_return_values = self.get_summary(
        return_period=return_period,
        return_period_size=return_period_size,
        alpha=alpha,
        **kwargs,
    )

    # Plot return values
    return plot_return_values(
        observed_return_values=observed_return_values,
        modeled_return_values=modeled_return_values,
        ax=ax,
        figsize=figsize,
    )

plot_trace(burn_in=0, labels=None, figsize=None)

Plot trace plot for MCMC sampler trace.

Parameters:

Name Type Description Default
burn_in int

Burn-in value (number of first steps to discard for each walker). By default it is 0 (no values are discarded).

0
labels array - like

Sequence of strings with parameter names, used to label axes. If None (default), then axes are labeled sequentially.

None
figsize tuple

Figure size in inches. If None (default), then figure size is calculated automatically as 8 by 2 times number of parameters.

None

Returns:

Name Type Description
figure Figure

Figure object.

axes list

List with n_parameters Axes objects.

Source code in src/pyextremes/eva.py
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
def plot_trace(
    self,
    burn_in: int = 0,
    labels: typing.Optional[typing.List[str]] = None,
    figsize: typing.Optional[typing.Tuple[float, float]] = None,
) -> typing.Tuple[plt.Figure, list]:  # pragma: no cover
    """
    Plot trace plot for MCMC sampler trace.

    Parameters
    ----------
    burn_in : int, optional
        Burn-in value (number of first steps to discard for each walker).
        By default it is 0 (no values are discarded).
    labels : array-like, optional
        Sequence of strings with parameter names, used to label axes.
        If None (default), then axes are labeled sequentially.
    figsize : tuple, optional
        Figure size in inches.
        If None (default), then figure size is calculated automatically
        as 8 by 2 times number of parameters.

    Returns
    -------
    figure : matplotlib.figure.Figure
        Figure object.
    axes : list
        List with n_parameters Axes objects.

    """
    trace, trace_map, labels = self._get_mcmc_plot_inputs(labels=labels)
    return plot_trace(
        trace=trace,
        trace_map=trace_map,
        burn_in=burn_in,
        labels=labels,
        figsize=figsize,
    )

set_extremes(extremes, method='BM', extremes_type='high', **kwargs)

Set extreme values.

This method is used to set extreme values onto the model instead of deriving them from data directly using the 'get_extremes' method. This way user can set extremes calculated using a custom methodology.

Parameters:

Name Type Description Default
extremes Series

Time series of extreme values to be set onto the model. Must be numeric, have date-time index, and have the same name as self.data.

required
method str

Extreme value extraction method. Supported values: BM (default) - Block Maxima POT - Peaks Over Threshold

'BM'
extremes_type str

high (default) - extreme high values low - extreme low values

'high'
kwargs

if method is BM: block_size : str or pandas.Timedelta, optional Block size. If None (default), then is calculated as median distance between extreme events. errors : str, optional raise - raise an exception when encountering a block with no data ignore (default) - ignore blocks with no data coerce - get extreme values for blocks with no data as mean of all other extreme events in the series with index being the middle point of corresponding interval min_last_block : float, optional Minimum data availability ratio (0 to 1) in the last block for it to be used to extract extreme value from. This is used to discard last block when it is too short. If None (default), last block is always used. if method is POT: threshold : float, optional Threshold used to find exceedances. By default is taken as smallest value. r : pandas.Timedelta or value convertible to timedelta, optional Duration of window used to decluster the exceedances. By default r='24H' (24 hours). See pandas.to_timedelta for more information.

{}
Source code in src/pyextremes/eva.py
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
def set_extremes(
    self,
    extremes: pd.Series,
    method: typing.Literal["BM", "POT"] = "BM",
    extremes_type: typing.Literal["high", "low"] = "high",
    **kwargs,
) -> None:
    """
    Set extreme values.

    This method is used to set extreme values onto the model instead
    of deriving them from data directly using the 'get_extremes' method.
    This way user can set extremes calculated using a custom methodology.

    Parameters
    ----------
    extremes : pd.Series
        Time series of extreme values to be set onto the model.
        Must be numeric, have date-time index, and have the same name
        as self.data.
    method : str, optional
        Extreme value extraction method.
        Supported values:
            BM (default) - Block Maxima
            POT - Peaks Over Threshold
    extremes_type : str, optional
        high (default) - extreme high values
        low - extreme low values
    kwargs:
        if method is BM:
            block_size : str or pandas.Timedelta, optional
                Block size.
                If None (default), then is calculated as median distance
                between extreme events.
            errors : str, optional
                raise - raise an exception
                    when encountering a block with no data
                ignore (default) - ignore blocks with no data
                coerce - get extreme values for blocks with no data
                    as mean of all other extreme events in the series
                    with index being the middle point of corresponding interval
            min_last_block : float, optional
                Minimum data availability ratio (0 to 1) in the last block
                for it to be used to extract extreme value from.
                This is used to discard last block when it is too short.
                If None (default), last block is always used.
        if method is POT:
            threshold : float, optional
                Threshold used to find exceedances.
                By default is taken as smallest value.
            r : pandas.Timedelta or value convertible to timedelta, optional
                Duration of window used to decluster the exceedances.
                By default r='24H' (24 hours).
                See pandas.to_timedelta for more information.

    """
    # Validate `extremes`
    if not isinstance(extremes, pd.Series):
        raise TypeError(
            f"invalid type in '{type(extremes).__name__}' for the `extremes` "
            f"argument, must be pandas.Series"
        )
    extremes = extremes.copy(deep=True)
    if not isinstance(extremes.index, pd.DatetimeIndex):
        raise TypeError("invalid index type for `extremes`, must be date-time")
    if not np.issubdtype(extremes.dtype, np.number):
        raise TypeError("`extremes` must have numeric values")
    if extremes.name is None:
        extremes.name = self.data.name
    else:
        if extremes.name != self.data.name:
            raise ValueError("`extremes` name doesn't match that of `data`")
    if (
        extremes.index.min() < self.data.index.min()
        or extremes.index.max() > self.data.index.max()
    ):
        raise ValueError("`extremes` time range must fit within that of data")

    # Get `method`
    if method not in ["BM", "POT"]:
        raise ValueError(f"`method` must be either 'BM' or 'POT', not '{method}'")

    # Get `extremes_type`
    if extremes_type not in ["high", "low"]:
        raise ValueError(
            f"`extremes_type` must be either 'BM' or 'POT', not '{extremes_type}'"
        )

    # Get `extremes_kwargs`
    extremes_kwargs = {}
    if method == "BM":
        # Get `block_size`
        extremes_kwargs["block_size"] = pd.to_timedelta(
            kwargs.pop(
                "block_size",
                pd.to_timedelta(np.quantile(np.diff(extremes.index), 0.5)),
            )
        )
        if extremes_kwargs["block_size"] <= pd.to_timedelta("0D"):
            raise ValueError(
                "`block_size` must be a positive timedelta, not %s"
                % extremes_kwargs["block_size"]
            )

        # Get `errors`
        extremes_kwargs["errors"] = kwargs.pop("errors", "ignore")
        if extremes_kwargs["errors"] not in ["raise", "ignore", "coerce"]:
            raise ValueError(
                f"invalid value in '{extremes_kwargs['errors']}' "
                f"for the `errors` argument"
            )

        # Get `min_last_block`
        extremes_kwargs["min_last_block"] = kwargs.pop("min_last_block", None)
        if extremes_kwargs["min_last_block"] is not None:
            if not 0 <= extremes_kwargs["min_last_block"] <= 1:
                raise ValueError(
                    "`min_last_block` must be a number in the [0, 1] range"
                )

    else:
        # Get `threshold`
        extremes_kwargs["threshold"] = kwargs.pop(
            "threshold",
            {
                "high": extremes.min(),
                "low": extremes.max(),
            }[extremes_type],
        )
        if (
            extremes_type == "high"
            and extremes_kwargs["threshold"] > extremes.values.min()
        ) or (
            extremes_type == "low"
            and extremes_kwargs["threshold"] < extremes.values.max()
        ):
            raise ValueError("invalid `threshold` value")

        # Get `r`
        extremes_kwargs["r"] = pd.to_timedelta(kwargs.pop("r", "24h"))
        if extremes_kwargs["r"] <= pd.to_timedelta("0D"):
            raise ValueError(
                "`r` must be a positive timedelta, not %s" % extremes_kwargs["r"]
            )

    # Check for unrecognized kwargs
    if len(kwargs) != 0:
        raise TypeError(
            f"unrecognized arguments passed in: {', '.join(kwargs.keys())}"
        )

    # Set attributes
    self.__extremes = extremes
    self.__extremes_method = method
    self.__extremes_type = extremes_type
    self.__extremes_kwargs = extremes_kwargs
    self.__extremes_transformer = ExtremesTransformer(
        extremes=self.__extremes,
        extremes_type=self.__extremes_type,
    )
    self.__model = None
    logger.info("successfully set extremes")